

Monksland, Co. Roscommon – Ground Investigation

Client:

Report No.:

Date:

Status:

Sweeney Architects

22-0410

December 2022

Final for Issue

Causeway Geotech Ltd

8 Drumahiskey Road, Ballymoney Co. Antrim, N. Ireland, BT53 7QL +44 (0)28 2766 6640 info@causewaygeotech.com www.causewaygeotech.com

stered in Northern Ireland. Company Number: NI610766 Approved: ISO 9001 • ISO 14001 • OHSAS 18001

CONTENTS

Document Control Sheet

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

1	AUTH	ORITY
2	SCOP	E
3	DESC	RIPTION OF SITE4
4	SITE (4.1 4.2	DPERATIONS Summary of site works Boreholes
5	LABO 5.1	RATORY WORK Geotechnical laboratory testing of soils
6	GROU 6.1 6.2 6.3	ND CONDITIONS
7	DISCU 7.1 7.2	JSSION. 7 Proposed construction 7 Recommendations for construction 7 7.2.1 Summary. 7 7.2.2 Soil strength parameters 7 7.2.3 Foundations and ground floor construction 7 7.2.4 Floor slabs 7 7.2.5 Excavations for services 7 7.2.6 Soil aggressivity 10
8	REFE	RENCES

APPENDICES

Appendix A	Site and exploratory hole location plans
Appendix B	Borehole logs
Appendix C	Geotechnical laboratory test results
Appendix D	SPT hammer energy measurement report

Document Control Sheet

Report No.:		22-0410								
Project Title:		Monksland, Co.	Roscommon							
Client:		Sweeney Archit	Sweeney Architects							
Revision:	A00	Status:	Final for issue	Issue Date:	16 th December 2022					
Prepared by:		Reviewed by:		Approved by:						
/ har I	huberd.	/ AL		Jam O'llion.						
Lucy Newland BSc FGS		Stuart Abraham MEng MIEI		Darren O'Mahony BSc MSc MIEI EurGeol PGeo						

The works were conducted in accordance with:

UK Specification for Ground Investigation 2nd Edition, published by ICE Publishing (2012)

British Standards Institute (2015) BS 5930:2015+A1:2020, Code of practice for ground investigations.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing.

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

Laboratory testing was conducted in accordance with:

British Standards Institute BS 1377:1990 parts 2, 4, 5, 7 and 9

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in BS5930:2015+A1:2020, The Code of Practice for Ground Investigation.

U	Nominal 100mm diameter undisturbed open tube sample (thick walled sampler).
UT	Nominal 100mm diameter undisturbed open tube sample (thin walled sampler).
Р	Nominal 100mm diameter undisturbed piston sample.
В	Bulk disturbed sample.
LB	Large bulk disturbed sample.
D	Small disturbed sample.
С	Core sub-sample (displayed in the Field Records column on the logs).
L	Liner sample from dynamic sampled borehole.
W	Water sample.
ES / EW	Soil sample for environmental testing / Water sample for environmental testing.
SPT (s)	Standard penetration test using a split spoon sampler (small disturbed sample obtained).
SPT (c)	Standard penetration test using 60 degree solid cone.
(x,x/x,x,x,x)	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm and the remaining four to the 75mm increments of the test length.
(Y for Z/ Y for Z)	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given seating or test length 'Z' (mm).
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm).
HVP / HVR	In situ hand vane test result (HVP) and vane test residual result (HVR). Results presented in kPa.
V VR	Shear vane test (borehole). Shear strength stated in kPa.V: undisturbed vane shear strengthVR: remoulded vane shear strength
Soil consistency description	In cohesive soils, where samples are disturbed and there are no suitable laboratory tests, N values may be used to indicate consistency on borehole logs – a median relationship of Nx5=Cu is used (as set out in Stroud & Butler 1975)
dd-mm-yyyy	Date at the end and start of shifts, shown at the relevant borehole depth. Corresponding casing and water depths shown in the adjacent columns.
\bigtriangledown	Water strike: initial depth of strike.
•	Water strike: depth water rose to.
Abbreviations relating	g to rock core – reference Clause 36.4.4 of BS 5930: 2015+A1:2020
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.
NI	Non Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.
DIF	Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.
(xxx/xxx/xxx)	Spacing between discontinuities (minimum/average/maximum) measured in millimetres.

Monksland, Co. Roscommon

1 AUTHORITY

On the instructions of Sweeney Architects ("the Client"), a ground investigation was undertaken at the above location to provide geotechnical and environmental information for input to the design and construction of a proposed residential development.

This report details the work carried out both on site and in the geotechnical testing laboratory; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results. A discussion on the recommendations for construction is also provided.

All information given in this report is based upon the ground conditions encountered during the ground investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those recorded during the investigation. No responsibility can be taken for conditions not encountered through the scope of work commissioned, for example between exploratory hole points, or beneath the termination depths achieved.

This report was prepared by Causeway Geotech Ltd for the use of the Client in response to a particular set of instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the Client, included boreholes, soil sampling, in-situ and laboratory testing, and the preparation of a report on the findings including recommendations for construction.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, the works were conducted on a green field site off Sli An Coiste Road, Monksland, Co, Roscommon. The site is bordered by residential properties to the east and south and agricultural land to the west and north. The site is largely flat.

4 SITE OPERATIONS

4.1 Summary of site works

Site operations, which were conducted between 8th November and 10th November 2022, comprised:

• thirteen boreholes by dynamic (windowless) sampling

The exploratory holes were located as instructed by the Client, as shown on the exploratory hole location plan in Appendix A.

4.2 Boreholes

Thirteen boreholes (BH01-BH12 & BH09A) were put down to completion by light percussion boring techniques using a Dando Terrier dynamic sampling rig. The boreholes were put down initially in 150mm diameter, reducing in diameter with depth as required, down to 50mm by use of the smallest sampler.

Hand dug inspection pits were carried out between ground level and 1.20m depth to ensure boreholes were put down clear of services or subsurface obstructions. The boreholes were taken to depths ranging between 0.85m and 2.98m where they were terminated on encountering virtual refusal on obstructions.

Standard penetration tests were carried out in accordance with BS EN 22476-3:2005+A1:2011 at standard depth intervals using the split spoon sampler ($SPT_{(s)}$) or solid cone attachment ($SPT_{(c)}$). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The *N*-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections. The SPT hammer energy measurement report is provided in Appendix D.

Disturbed (bulk and small bag) samples were taken within the encountered strata.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded. Details of the water strikes are presented on the individual borehole logs.

Appendix B presents the borehole logs.

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described, and their descriptions incorporated into the borehole logs.

5.1 Geotechnical laboratory testing of soils

Laboratory testing of soils comprised:

- **soil classification:** moisture content measurement, Atterberg Limit tests and particle size distribution analysis.
- **soil chemistry:** pH and water soluble sulphate content

Laboratory testing of soils samples was carried out in accordance with British Standards Institute: *BS 1377, Methods of test for soils for civil engineering purposes; Part 1 (2016), and Parts 2-9 (1990).*

The test results are presented in Appendix C.

6 GROUND CONDITIONS

6.1 General geology of the area

Published geological mapping indicate the superficial deposits underlying the site comprise fluvioglacial deposits. These deposits are underlain by limestone of the Visean Limestone Formation.

6.2 Ground types encountered during investigation of the site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- **Topsoil:** encountered typically in 100-400mm thickness across the site.
- **Fluvioglacial deposits:** typically very soft or soft sandy gravelly clay and silt interspersed with layers of loose to medium dense sands and gravels.

6.3 Groundwater

Groundwater was encountered during percussion boring through soil as a water strike at 2.3m in borehole BH01, all other boreholes were dry.

Details of the individual groundwater strikes, along with any relative changes in levels as works proceeded, are presented on the exploratory hole logs for each location.

Seasonal variation in groundwater levels should also be factored into design considerations.

7 DISCUSSION

7.1 Proposed construction

It is proposed to construct a new housing development on the site.

No further details were available to Causeway Geotech at the time of preparing this report and any designs based on the recommendations or conclusions within this report should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory holes. Causeway Geotech were commissioned to provide a geotechnical report, and it is outwith our remit to advise on structure design.

7.2 Recommendations for construction

7.2.1 Summary

Based on the presence of stiff fluvioglacial deposits at relatively shallow depths across the footprint of the proposed building, the implementation of traditional shallow (spread) foundations (strip/pad and trench fill) are considered suitable.

7.2.2 Soil strength parameters

When estimating the shear strength of fine soils (silt/clay), reference is made to the results of Standard Penetration Tests (SPT's) carried out within the boreholes. The undrained shear strength of fine soils can be estimated using the correlation developed by Stroud & Butler:

$$C_u = f_1 \ge N$$

where f_1 is typically in the range 4 to 6. A median f_1 value of 5 is adopted for this report.

For granular soils (sand/gravel), a graphical relationship between SPT "N" value and angle of shearing resistance, φ , has been developed by Peck, Hanson and Thorburn. This is published in *Foundation Design and Construction* (Tomlinson, 2001) and is referenced in this report when deriving angles of shearing resistance for the gravel soils.

7.2.3 Foundations and ground floor construction

Foundations should transfer loading to below any Made Ground or subsoil. The recommended foundation construction and allowable bearing pressure (ABP) at the borehole locations are presented in Table 1.

Table 1: Construction recommendations

Borehole	Depth below EGL* to suitable bearing stratum	Estimated ABP (kPa)	Strata description	Foundation type	Ground floor construction	Groundwater
BH01	2.50m	>250	Possible bedrock	Trench fill (with trench support)	Ground bearing	2.30mbgl
BH02	1.80m	>250	Possible bedrock	Trench fill (with trench support)	Ground bearing	Not encountered
BH03	0.70m	>250	Possible bedrock	Strip & pad	Ground bearing	Not encountered
BH04	1.20m	>250	Possible bedrock	Strip & pad	Ground bearing	Not encountered
BH05	2.00m	>250	Possible bedrock	Trench fill (with trench support)	Suspended	Not encountered
BH06	1.00m	>2.50	Possible bedrock	Strip & pad	Ground bearing	Not encountered
BH07	1.20m	210	Stiff fluvioglacial	Strip & pad	Ground bearing	Not encountered
BH08	2.00m	250	Medium dense sand	Trench fill (with trench support)	Ground bearing	Not encountered
BH09	1.20m	>250	Very stiff fluvioglacial	Strip & pad	Ground bearing	Not encountered
BH10	1.20m	>250	Stiff fluvioglacial	Strip & pad	Ground bearing	Not encountered
BH11	2.00m	250	Medium dense sand	Trench fill (with trench support)	Suspended	Not encountered
BH12	2.45m	>250	Very dense gravel	Trench fill (with trench support)	Suspended	Not encountered

*Existing Ground Level

Based on the findings of the ground investigation, spread foundations (strip/pad and trench fill) are considered suitable with estimated allowable bearing pressures between 210kPa and >250kPa at depths between 0.70m and 2.50m on stiff to very stiff fluvioglacial, medium dense sand, very dense gravel or possible bedrock.

The base of foundation excavations should be thoroughly inspected in accordance with the Earthworks Specification; any soft soils should be removed with the resultant void backfilled with ST1 concrete. A consistent bearing stratum should be provided for any building unit to limit differential settlements.

Given the predominance of the silt and granular strata, excavations for foundations are not likely to be stable. Where space allows, instability can be minimised by battering the side slopes at 2 vertical to 1 horizontal and by limiting the duration that the excavation is open.

7.2.4 Floor slabs

Floor slabs should not bear directly onto Made Ground or soft soils. Consequently, the use of ground bearing floor slabs is considered appropriate following the removal of any surface Made Ground and soft clay layers and their replacement using well-graded well-compacted granular fill. However, a suspended floor slab should be adopted where the difference in levels of the proposed floor and the base of Made Ground/soft soils is greater than 600mm.

Therefore, given the relative low strength of upper soil layers, a suspended floor slab may be required over parts of the site. The use of intermediate lines of support stub walls would reduce the spans required for flooring units.

7.2.5 Excavations for services

For the installation of services ducts/trenches, it is suggested that open trenching will be the most practicable construction method. Generally speaking, the ground conditions should render the use of open trenching by backhoe excavator possible, with some trench support required for the uppermost granular stratum.

Where working in open trenches, it is thought that trench support systems, by way of a trench box (or possibly sheet piles), will be required to maintain trench stability and safe working conditions. Groundwater control at these locations should be possible by means of sump pumping.

To preclude the eventuality of differential settlements in pipes, they should be laid on a consistent stratum of appropriate allowable bearing capacity and protected with appropriate fill cover.

Where ducts and chambers must be installed in areas where localised soft spots are encountered, the use of geogrid reinforcement along the base of the excavation is recommended. This will stiffen the base of the trench and help control longitudinal differential settlement.

Backfilling of trenches may be completed by using compacted Cl 804 granular fill and reinstated as appropriate.

7.2.6 Soil aggressivity

An assessment of the Aggressive Chemical Environment for Concrete (ACEC) was undertaken through reference to the Building Research Establishment (BRE) Special Digest 1 (2017).

As noted by BRE Special Digest 1, sulphates in the soil and groundwater are the chemical agents most likely to attack concrete. The extent to which sulphates affect concrete is linked to their concentrations, the type of ground, the presence of groundwater, the type of concrete and the form of construction in which concrete is used.

BRE Special Digest 1 identifies four different categories of site which require specific procedures for investigation for aggressive ground conditions:

- Sites not subjected to previous industrial development and not perceived as containing pyrite;
- Sites not subjected to previous industrial development and perceived as containing pyrite;
- Brownfield sites not perceived as containing pyrite;
- Brownfield sites perceived as containing pyrite.

For the purposes of this report the site was classified as not having been subject to previous industrial development and not perceived as containing pyrite.

The results of chemical tests (pH and water soluble sulphate contents) on soil samples indicate Design Sulphate Class DS-1 and ACEC Class AC-1s – reference Table C1 of BRE Special Digest 1 (Building Research Establishment, 2005). The Special Digest does not require any measures to protect underground concrete elements greater than 140mm thick.

8 **REFERENCES**

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland.

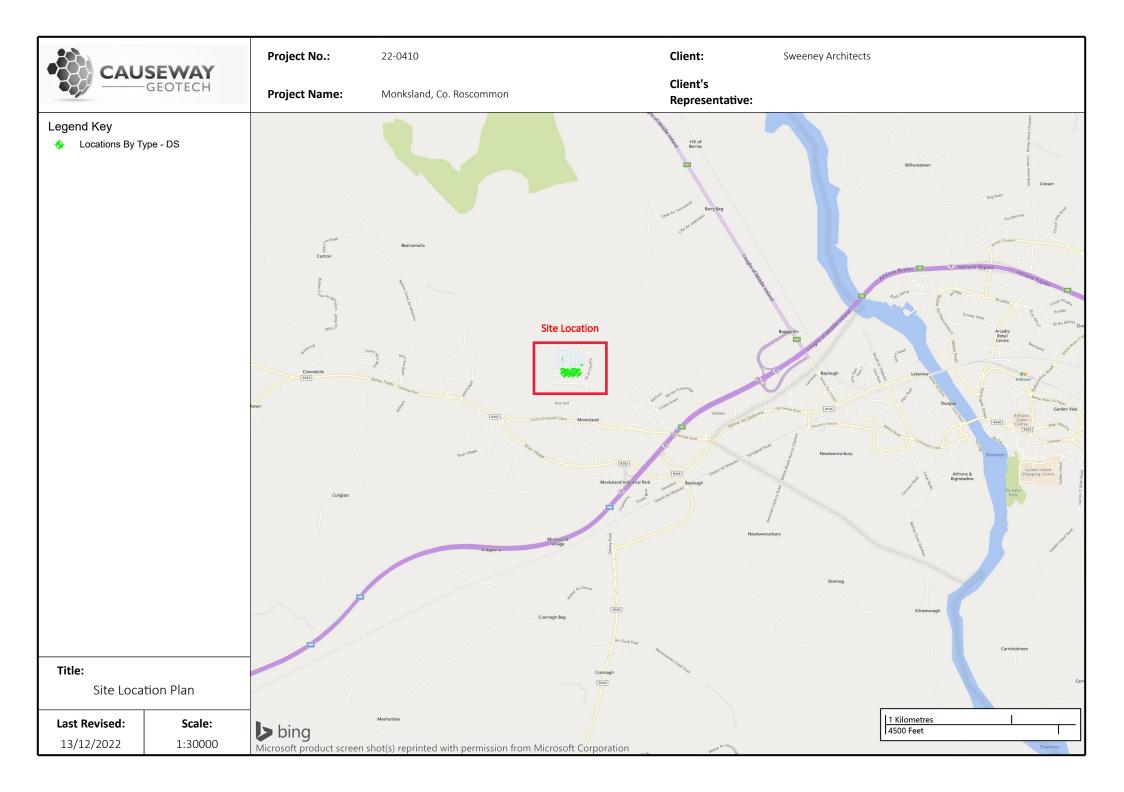
IS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. National Standards Authority of Ireland.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. British Standards Institution.

BS 5930: 2015+A1:2020: Code of practice for ground investigations. British Standards Institution.

BS EN ISO 14688-1:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 1 Identification and description.

BS EN ISO 14688-2:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 2 Principles for a classification.


BS 1377: 1990: Methods of test for soils for civil engineering purposes. British Standards Institution.

BS EN ISO 22476-3:2005+A1:2011: Geotechnical investigation and testing. Field testing. Standard penetration test.

APPENDIX A SITE AND EXPLORATORY HOLE LOCATION PLANS

APPENDIX B BOREHOLE LOGS

	/ -	GEOT	ECH		Projec 22-0	410	Project Name: Monksla Client: Sweeney Client's Rep:	nd, Co. Roscommon / Architects		orehole ID BH01
Metho Dynamic Sa		Plant Used Premier 110	Top (m) 0.00	Base (m) 2.50	Coord		Final Depth: 2.50 m	Start Date: 09/11/2022 Driller:	IMcK I	neet 1 of 1 cale: 1:50
					241978	8.91 N	Elevation: mOD	End Date: 09/11/2022 Logger:	SA	FINAL
Depth (m)	B7 D8 SPT (S)	Field Record N=7 (1,1/2,2,1,2) Han D130 N=1 (0,0/0,0,0,1) Han D130 Water strike at 2.30m N=50 (25 for 10mm/5 5mm) Hammer SN = [nmer SN = nmer SN = 0 for		Level mOD	Depth (m)	Legend TOPSOIL Firm to stiff brown Loose brown clayey	Description Slightly sandy CLAY. Sand is fine to coarse.	Mater	Backfill Backfill
ruck at (m) Ca 2.30		r Strikes)) Time (min) Rose to 20 2.30	(m) To (n	sing Detai n) Diam	eter _{Ha}	-	spection pit excavated to 1.20m		Last Updated	7. 8. 9. 9.

		GEOT	ECH	1	22-	ect No. 0410	Project Client: Client's		Borehol BH0	2				
Metho Dynamic Sa		Plant Used Premier 110	Top (m) 0.00	Base (m) 1.95		dinates	Final De	pth: 1.95 m	Start Date: 09)/11/2022	Driller: JM	1cK	Sheet 1 Scale: 1	
						05.89 E 73.24 N	Elevatio	n: mOD	End Date: 09	9/11/2022	Logger: SA		FINA	L
Depth (m)	Sample / Tests	Field Records		Casing Water Depth Depth (m) (m)	Level mOD	Depth (m)	Legend		Descript	ion		Water	Backfill	
0.50 0.50	B1 D2					0.20		TOPSOIL Soft brown slightly s coarse. Gravel is su						
1.00	B3					- 0.70		Firm to stiff brown s	sandy CLAY. Sand i	is fine to coa	rse.			1.0
1.00 1.00 1.20 1.20 1.20 - 1.65	D4 B5 D6	N=6 (1,2/1,2,2,1) Hamı	mar SN -			1.10		Soft brown slightly Gravel is subangula	sandy slightly grav r to subrounded fi	velly CLAY. Sa ine to mediu	ind is fine to co im.	oarse.		1.0 - - 1.5
1.80 - 1.96		D130 N=50 (18,7/50 for 5mn		0.00 0.00		-								-
		Hammer SN = D130				_ 1.95 - - -			End of Borehole	e at 1.95m				2.0
						-								2.5 -
					-								3.0	
						-								3.5 -
						= = = =								4.0
						-								4.5 -
						-								5.0
						-								5.5 — - -
						- - - -								6.0
						- - -								6.5 -
						+ 								7.0
						-								7.5
						- - - -								8.0
						-								8.5 -
						-								9.0 -
Struck at (m) Ca		r Strikes) Time (min) Rose to (r		sing Deta		emarks	spection n	it excavated to 1.20m				I	1	
						and dug III	οροσιστ μ							
							on Reasor					ast Updat 13/12/202		L GS

	/ -	GEOT	ECH		22-0410		Client's Rep:							le ID 3
Methoe Dynamic San		Plant Used Premier 110	Top (m) 0.00	Base (m) 0.85			Final De	epth: 0.85 m	Start Date:	09/11/2022	2 Driller: JMcK		Sheet 1 Scale: 2	
						58.37 E 51.02 N	Elevatio	m: mOD	End Date:	09/11/2022	Logger: S	SA	FINA	AL.
Depth (m)	Sample / Tests	Field Records		Casing Water Depth Depth (m) (m)	Level mOD	Depth (m)	Legend		Des	cription		Water	Backfil	I
1.50 .50 .70 .70 - 0.86	B1 D2 B3 D4 SPT (C)	50 (14,10/50 for 10mn Hammer SN = D130	n)	(m) (m) 0.00 0.00	Is R	emarks		TOPSOIL Greyish brown sligh coarse GRAVEL with Very stiff greyish bro Gravel is subangulai lithologies including	itly sandy sub n low cobble of own sandy gr r to subround End of Bor	angular to subro content. Sand is f avelly CLAY. Sand led fine to coarse	ine to coarse is fine to coa of mixed	0		0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

Metho	/ -	GEOT Plant Used	ECH	Base (m)	Projec 22-0 Coordi	410	Project Name: Mor Client: Swe Client's Rep:	ksland, Co. Reeney Architec		1		Borehole BH04 Sheet 1 of			
Dynamic Sa		Premier 110	0.00	1.65	20067: 24194:	1.37 E			e: 09/11/2022 : 09/11/2022	Driller: JMcK		Scale: 1: FINAL	50		
Depth	Sample /	Field Records		Casing Water Depth Depth	Level	Depth					ater		-		
(m) 0.50 0.50 1.00 1.20 1.20 - 1.65 1.65 - 1.66	Tests B1 D2 B3 D4 B5 D6 SPT (S) SPT (C)	Field Records	lammer for 5mm)	cuerti entropy de la construcción de la construc	ils Re	marks	Dense browni	hdy CLAY. Sand is hgrey slightly cl Sand is fine to	ayey slightly sandy	/ angular fine to veathered bedrock)		Backfill	0.5 1.0 2.5 3.0 4.0 4.5 5.5 6.0 6.5 7.0 6.5 7.0 8.0 8.5 9.0		
ruck at (m) Ca	ising to (m) Time (min) Rose to (<u>m) To (r</u>	n) Dian		-	spection pit excavated to : n Reason	65m		Last U	Jpdate	ed 📕			
					Ter	Terminated on refusal. 13/1						2/2022 AG			

	CAUSEWAY GEOTECH ethod Plant Used Top (m) Base						ct No. 0410	Project Client: Client's	Sweene	and, Co. Roscommon y Architects		Вс	orehole ID BH05
		Plant Used Premier 110				Coord	linates	Final De	epth: 2.30 m	Start Date: 08/11/2022	Driller: JMcK		heet 1 of 1
Dynamic S	amping	Premier 110	0.00	2.	30		1.00 E					9	Scale: 1:50
Depth	Sample /			Casing	Water	Level	6.00 N	Elevatio	mod	End Date: 08/11/2022	Logger: CH	Ŀ	FINAL
(m)	Tests	Field Records		Depth (m)	Depth (m)	mOD	(m)	Legend	TOPSOIL	Description		Water	Backfill
0.50 0.50 1.00 1.00 1.20 1.20 1.20 - 1.65	B1 D2 B3 D4 B5 D6 SPT (S)	N=3 (1,0/1,0,1,1) Hami D130	mer SN =	0.00	Dry		0.40 		Very soft brown sar	ndy CLAY. Sand is fine to coarse			0.5
2.00 - 2.30	SPT (C)	N=50 (3,8/50 for 150m Hammer SN = D130	m)	0.00	Dry		- - 2.00 - 2.30			ey slightly clayey slightly sandy nd is fine to coarse. (Possible w End of Borehole at 2.30m			2.0
							- - - -						2.5
							-						
							-						- - 4.0
							-						4.5 — - -
							- - - -						5.0 — - - 5.5 —
							-						
							-						
							-						7.0
							-						7.5
							- - - -						8.0 — - - 8.5 —
							- - - -						- - - 9.0
Struck at (m)		r Strikes 1) Time (min) Rose to (r	Cas n) To (n	n)	Detail Diam	eter Ha	emarks and dug in: erminatio		nit excavated to 1.20n	n	Last	Update	
						Те	rminated o	on refusal				12/2022	

Method	GEOT Plant Used	ECH	Base (m)	Projec 22-0 Coord	410	Project Client: Client's		nd, Co. Ros y Architects				Borehole BH06 Sheet 1 of		
Dynamic Samplin		0.00	1.00	200789	9.20 E	Final De			09/11/2022	Driller: JMcK		Scale: 1	:50	
Donth Samal			Casing Water	24193		Elevatio	on: mOD		09/11/2022	Logger: SA	Ŀ	FINA		
Wa		50 for D130	Casing Water Depth bepth (m) 0.00 Dry 0.00 Dry 10 D		Depth (m) - 0.30 - 0.90 - 1.00 	Legend	TOPSOIL Firm greyish brown is subangular to sub including weathered Dense greyish brow fine to coarse. (Pos if excavated to 1.00m	sandy gravell prounded fine d bedrock. In sandy angu sible weather End of Bor	to coarse of mix	ed lithologies		Backfill	0.5 - 1.0 - 1.5 - 2.0 - 2.0 - 3.0 - 3.5 - 3.0 - 3.5 - 3.5 - 5.5 - 5.5 - 5.5 - 6.0 - 7.5 - 7.5 - 8.0 - 9.0 - 9.	
						on Reason					Updat		GS	

0 D2 0 B3 0 D5 0 D5 0 D5 0 D10 0 D10		9 -	GEOT	ECH		22	oject No. 2-0410	Client:		Architects				Borehol BH0	7
Vertex Vertex Calabra - 100								Final De	epth: 1.65 m	Start Date:	art Date: 08/11/2022 Driller: JMcK				
image image <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Elevatio</th><th>on: mOD</th><th>End Date:</th><th>08/11/2022</th><th>Logger:</th><th>SA</th><th>FINA</th><th>Ĺ</th></th<>								Elevatio	on: mOD	End Date:	08/11/2022	Logger:	SA	FINA	Ĺ
0 93 0.0 93 0.0 94 1.40 Stiff brows sawy singly provide CLW. Sind is The to coarse. Gravel 1.40 0.0 93 0.0 94 1.41 1.42 Medurin (dense gray saw) angular fine to coarse. Gravel 1.40 5.1.6 971 (C) N=30 (25 for som/26 for Sime) 0.00 0.4 1.65 Medurin (dense gray saw) angular fine to coarse. Gravel Including the to coarse. Gravel 1.40 5.1.66 971 (C) N=30 (25 for som/26 for Sime) 0.00 0.47 1.65 Medurin (dense gray saw) angular fine to coarse. Gravel Including the to coarse. Would be at 100m Including the to coarse. Including the to coarse. Would be at 100m Including the to coarse. Would be at 100m Including the to coarse. Including the totocoarse. Including the totocoarse.			Field Records		Casing Wat Depth Dept (m) (m)	h Love		Legend	Legend Description					Backfil	
Water Strikes Casing Details Remarks ck at (m) Casing to (m) Time (min) Rose to (m) To (m) Diameter Hand dug inspection pit excavated to 1.20m	(m) 50 50 .00 .20 .20 .20 .20 .20 .20 .2	B1 D2 B3 D4 B5 D6 SPT (S) B7	N=21 (1,2/2,4,8,7) Har D130 N=50 (25 for 5mm/50	nmer SN =	0.00 Dr	y y	0.20		Stiff brown sandy sl is subangular to sub Medium dense grey	ightly gravelly prounded fine y sandy angula ssible weathere	CLAY. Sand is fir to coarse. r fine to coarse ed bedrock)		Gravel		0.5 1.0 1.5 2.0 2.15 3.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 7.0 7.0 7.0 8.0 8.0
ck at (m) Casing to (m) Time (min) Rose to (m) To (m) Diameter Hand dug inspection pit excavated to 1.20m Hand dug inspection pit excavated to 1.20m															9.0
	uck at (m) c								l				I		
Termination Reason Last Updated	ruck at (m) C							nspection p	bit excavated to 1.20m	1					
							Terminatio	on Reaso	n				Last Upda	ated	_

	/ -	GEOT Plant Used	ECH	Beer (22-	ect No. •0410 •dinates	Project Na Client: Client's Re	Sweeney	nd, Co. Roscommon / Architects			BH08	
Metho Dynamic Sa		Premier 110	Top (m) 0.00	2.45	2007	65.81 E	Final Depth		Start Date: 10/11/2022	Driller: JMcK	S	cale: 1:5	50
Depth	Sample /			Casing Wat		96.41 N	Elevation:	mOD		Logger: SA		FINAL	
(m)	Tests	Field Records		Casing Wat Depth Dept (m) (m)	h mOD	(m)	Legend TC	PSOIL	Description		Water	Backfill	
).50).50	B1 D2					0.35	So	ft brown sandy Cl	LAY. Sand is fine to coarse.		-		0.5
.00 .00	B3 D4					- - 0.90 -	co		slightly sandy very gravelly CL bangular to subrounded fine to		_		1.0
.20 .20 - 1.65 .60	B5 SPT (C) B6	N=11 (1,1/3,3,3,2) Hai D130	nmer SN =	0.00 0.0	0	- - - 1.60	M		wn clayey slightly gravelly fine	to coarse SAND.	_		1.5
.00 .00 - 2.45		N=25 (1,2/2,3,9,11) Ha = D130											2.0
.45 - 2.46	SPT (C)	N=50 (25 for 5mm/50 Hammer SN = D130	for 5mm)	0.00 Dr	<i>y</i>	2.45			End of Borehole at 2.45m				2.5
													3.0
						-							3.9
						- - -							4.5
						-							5.0
													5.5
						-							6.0
						-							6.5
						-							7.0
						-							7.5
						- - - -							8.0
						- - - -							8.5
						-					_		9.0
uck at (m) Ca		r Strikes)) Time (min) Rose to (n) Dia		Remarks Hand dug in	spection pit ex	xcavated to 1.20m					
						Terminatio	on Reason			Last l	Jpdatec	1 1	_
					r	[erminated	on refusal.			13/1	2/2022	A	ļ

	9 -	GEOT	ECH		22-	ect No. 0410	Project Client: Client's	Sweeney	nd, Co. Roscommon y Architects			orehole ID BH09
Metho Dynamic Sa		Plant Used Premier 110	Top (m) 0.00	Base (m) 1.35		dinates	Final De	pth: 1.35 m	Start Date: 08/11/2022	2 Driller: JMcł		Sheet 1 of 1 Scale: 1:50
						70.81 E 56.78 N	Elevatio	n: mOD	End Date: 08/11/2022	2 Logger: SA		FINAL
Depth (m)	Sample / Tests	Field Records		Casing Water Depth Depth (m) (m)	Level mOD	Depth (m)	Legend		Description	Į.	Water	Backfill
0.50 0.50 1.00 1.20 1.20 - 1.36	Tests B1 D2 B3 D4 D5 SPT (S)	Field Records) Hammer		mOD	emarks		Sand is fine to coars coarse Stiff brown sandy sl	Description ightly gravelly CLAY with lov se. Gravel is subangular to s ightly gravelly SILT. Sand is fi orounded fine to coarse End of Borehole at 1.35m	ubrounded fine to ne to coarse. Grave		Backfill 0.5 1.0 1.0 1.0 1.0 1.0 2.0 1.1 2.0 1.1 2.0 1.1 2.0 1.1 2.0 1.1 2.0 1.1 2.0 1.1 2.0 1.1 2.0 1.1 2.0 1.1 2.0 1.1 2.0 1.1 2.0 1.1 3.0 1.1 3.0 1.1 3.0 1.1 3.0 1.1 3.0 1.1 3.0 1.1 3.0 1.1 3.0 1.1 3.0 1.1 3.0 1.1 3.0 1.1 3.0 1.1 3.0 1.1 3.0 1.1 3.0 1.1 3.0 1.1 3.0 1.1 </td
<u>itruck at (m) C</u>	asing to (m	Time (min) Rose to (r	<u>n) To (n</u>	n) Diam			on Reaso	it excavated to 1.20m	1	Las	t Update	ed
					Т	erminated	on refusal.			13	/12/202	² AG

		GEOTE	СН			Project No. 22-0410	Project Client: Client'	Sweeney	nd, Co. Roscommo / Architects	n	E	orehole ID BH09A
Metho Dynamic Sa		Plant Used Premier 110	Top (m) 0.00	Base (1.40)	Coordinates	Final De	epth: 1.40 m	Start Date: 08/11/2	2022 Driller:	IMcK I	Sheet 1 of 1 Scale: 1:50
						200673.67 E 241865.09 N	Elevatio	on: mOD	End Date: 08/11/2	2022 Logger:		FINAL
Depth (m)	Sample / Tests	Field Records		Casing W Depth De (m) (Level Depth mOD (m)	Legend		Description		Water	Backfill
	Tests B1 D2 B3 D4 D5 SPT (S)	Field Records)	Casing w Depth but (m) (-ppth n		Legend	Sand is fine to coars coarse Very stiff brown san	Description lightly gravelly CLAY with se. Gravel is subangular ndy slightly gravelly CLAY r to subrounded fine to End of Borehole at 1	• to subrounded fin Y. Sand is fine to co coarse	ent. ne to	Backfill 0.5 - 1.0 - 1.5 - 2.0 - 2.5 - 3.0 - 3.5 - 4.0 - 4.5 - 5.5 - 6.0 -
												6.5 - 7.0 7.5
												8.0 —
						- - - -						8.5 -
						-						9.0 —
	Water	⁻ Strikes	()	sing De	tails	Remarks						
<u>štruck at (m)</u> Ca) Time (min) Rose to (m			iamete		ispection p	it excavated to 1.20m	1			
						Terminatio Terminated					Last Updat 13/12/202	

MethodPlant UsedTop (m)Base (m)CoordinatesParenier 110No1.80Premier 110No1.80Premier 110No1.80Premier 110NoPremier 110NoPremier 110NoPremier 110NoPremier 110NoPremier 110NoPremier 110NoPremier 110Premier 110NoPremier 110Premier 110NoPremier 110Premier 11	SA FIN	et 1 of 1 Ile: 1:50 INAL
Depth (m) Sample / Tests Field Records Call of begin (m) Water (m) Level (m) Depth (m) Legend Description 0.50 B1 0.50 B1 0.30 0.30 0.30 50f brown slightly sandy gravelly CLAY. Sand is fine to coarse is subangular to subrounded fine to coarse Stiff grey slightly sandy very gravelly CLAY. Sand is fine to coarse 1.00 B3 - - - - 1.20 1.65 SPT (C) D130 N=30 (3,5/7,8,8,7) Hammer SN = 0.00 0.00 0.00 -	La	INAL
Image: Construction Tests Field Records Depth (m) Depth (m)		
Water Strikes Casing Details Remarks truck at (m)/Canage to (m) To (m) Diameter Hand dag inspection pit excavated to 1,20m	ontent.	ackfill ackfill 1

						Proje	ect No.	Project	t Name: Mon	ıkslaı	nd, Co. Roscommon			Borel	hole ID
	C	CAUSEW	/AY			22-(0410	Client:	Swee	eney	Architects			Bł	H11
	- 7	GEOT	ECH					Client's	s Rep:						
Met		Plant Used	Top (m)			Coorr	dinates	Final De	enth 24ª	5 m	Start Date: 08/11/2022	Driller:		Sheet	t 1 of 1
Dynamic S	Sampling	Premier 110	0.00	2.4	45	2007:	37.86 E			<u> </u>				Scale	e: 1:50
	I					24186	65.67 N	Elevatio)n: m	nOD	End Date: 08/11/2022	Logger:	5A	FII	NAL
Depth (m)	Sample / Tests	Field Records		Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend			Description	<u>.</u>		Aater Mater	ckfill
				1	,,		- 0.20		TOPSOIL			· · · · ·		>	
0.50	B1						0.45		Sand is fine to		sandy gravelly CLAY with low c se. Gravel is subangular to sub				- 0.5 -
0.50	D2							$\begin{array}{c} \times \times \times \times \\ \times \times \times \\ \times \times \times \end{array}$			gravelly sandy SILT. Sand is fine	e to coarse. (Gravel		
1.00	B3						[is subangular to	to sub	prounded fine to coarse.				1.0
1.00 1.20	D4 B5														
1.20 1.20 - 1.65		N=5 (1,0/1,0,2,2) Ham	mer SN =	0.00	0.00		- - -	$\times \times \times \times$	-						1.5 —
1.80	B7	D130					- 1.80	XXXX	Medium dense	e brov	wn fine SAND				
2.00 2.00	B9 D8						-								2.0
2.00 - 2.45		N=25 (1,3/7,6,6,6) Han D130	nmer SN =	0.00	Dry		2.35 2.45				n sandy angular fine to coarse	GRAVEL. Sa	nd is		2.5
2.45 - 2.46	SPT (C)	N=50 (25 for 5mm/50 10mm) Hammer SN = I		0.00	0.00		-		\fine to coarse.	(Poss	sible weathered bedrock) End of Borehole at 2.45m		/		
		101111/101111	150				-								3.0
							-								
							-								3.5 —
							-								4.0
							-								4.5 —
							-								4.3 -
							-								5.0 -
							-								
							-								5.5 —
							-								
															6.0
							-								
															6.5 -
							-								7.0
							-								
							-								7.5
							-								
															8.0 -
							-								
							-								8.5 -
							-								9.0
		r Strikes			Detail		emarks		1						
Struck at (m)	Casing to (m	n) Time (min) Rose to (r	m) To (m	<u>)</u>	Diam	eter Ha	and dug ins	spection p	oit excavated to 1	1.20m	1				
						L									
							erminatio						Last Upd		
	1					Te	erminated o	on refusal					13/12/20	022	AGS

Method	GEOT Plant Used	ECH	Base (m)	Project No. 22-0410 Coordinates	Project Name: Monksland, Co. Roscommon Client: Sweeney Architects Client's Rep:	Borehole ID BH12 Sheet 1 of 1
Dynamic Sampling		0.00	2.98	200776.65 E 241867.38 N	Final Depth: 2.98 m Start Date: 10/11/2022 Driller: JMcK Elevation: mOD End Date: 10/11/2022 Logger: SA	Scale: 1:50 FINAL
Depth Sample /	/ Field Records	s	Casing Water Depth Depth	Level Depth		
(m) Tests 0.50 B1 0.50 D2 1.00 B3 1.00 D4 1.20 B5 1.20 - 1.65 SPT (S) 1.35 B7 2.00 B8 2.00 D6 2.00 - 2.45 SPT (S)	Field Records		0.00 Dry 0.0	Level Depth mOD 0.45	Legend Description Soft brown very sandy CLAY. Sand is fine to coarse. Soft brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Gravel is subangular to subrounded fine to coarse. Soft brown very sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Soft brown very sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. Soft brown very sandy CLAY. Sand is fine to coarse. Subrounded fine to coarse GRAVEL. Sand is fine to coarse. Soft brown very sandy CLAY. Sand is fine to coarse. Subrounded fine to coarse GRAVEL. Sand is fine to coarse. Soft brown very sandy CLAY. Sand is fine to coarse. Subrounded fine to coarse GRAVEL. Sand is fine to coarse. Soft brown very sandy coarse. End of Borehole at 2.98m	ight Backfill Backfill Backfill
Wate	r Strikes	Cas	sing Detail	s Remarks		9.0
	n) Time (min) Rose to (pection pit excavated to 1.20m	
				Terminatio		Updated

APPENDIX C GEOTECHNICAL LABORATORY TEST RESULTS

HEAD OFFICE Causeway Geotech Ltd 8 Drumahiskey Road Ballymoney Co. Antrim, N. Ireland, BT53 7QL NI: +44 (0)28 276 66640

Registered in Northern Ireland.

Company Number: NI610766

Causeway Geotech (IRL) Ltd Unit 1 Fingal House Stephenstown Industrial Estate Balbriggan, Co Dublin, Ireland, K32 VR66 ROI: +353 (0)1 526 7465

Registered in Ireland. Company Number: 633786

REGIONAL OFFICE

www.causewaygeotech.com

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

6 December 2022

Project Name:	Monksland, Co. Roscommon
Project No.:	22-0410
Client:	Sweeney Architects

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the Contents page(s). This testing was performed between 22/11/2022 and 06/12/2022.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 28 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

John Wohn

Stephen Watson Laboratory Manager Signed for and on behalf of Causeway Geotech Ltd

Project Name: Monksland, Co. Roscommon

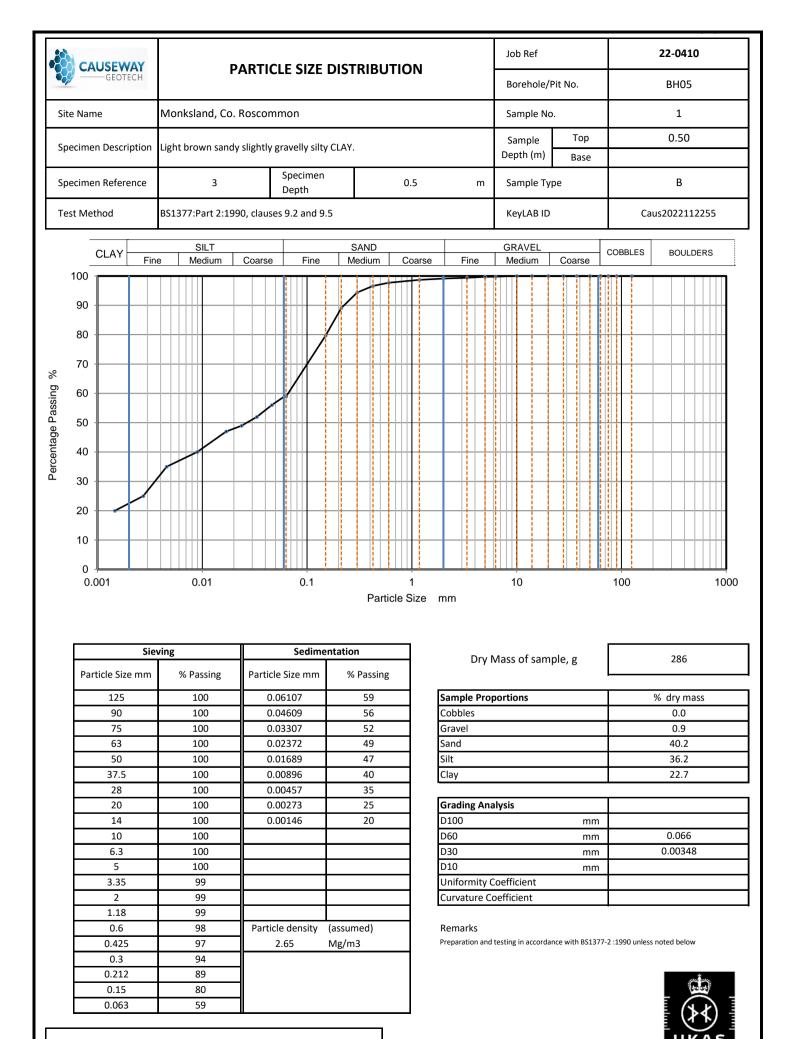
Report Reference: Schedule 1

The table below details the tests carried out, the specifications used, and the number of tests included in this report. The results contained in this report relate to the sample(s) as received

Tests marked with* in this report are not United Kingdom Accreditation Service (UKAS) accredited and are not included in Causeway Geotech Limited's scope of UKAS Accreditation Schedule of Tests. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL	Moisture Content of Soil	BS 1377-2: 1990: Cl 3.2	11
SOIL	Liquid and Plastic Limits of soil-1 point cone penetrometer method	BS 1377-2: 1990: Cl 4.4, 5.3 & 5.4	11
SOIL	Particle size distribution - wet sieving	BS 1377-2: 1990: Cl 9.2	7
SOIL	Particle size distribution - sedimentation hydrometer method	BS 1377-2: 1990: Cl 9.5	5

SUB-CONTRACTED TESTS

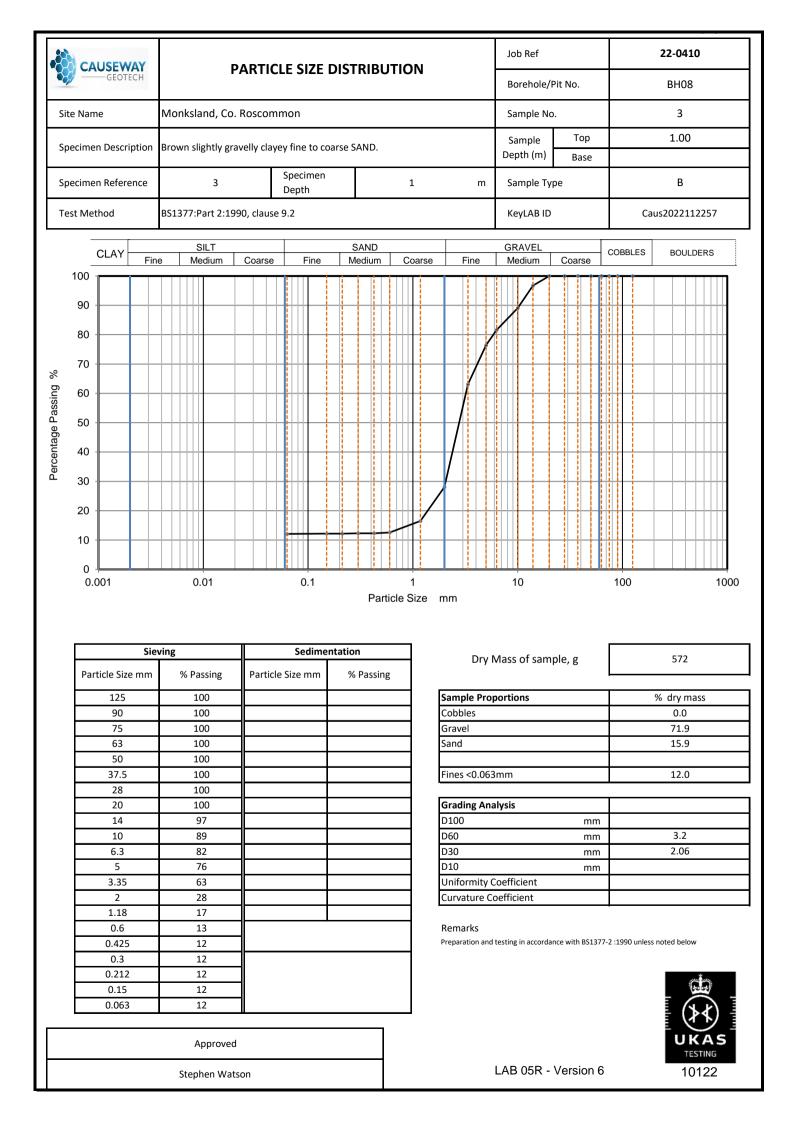

In agreement with Client, the following tests were conducted by an approved sub-contractor. All subcontracting laboratories used are UKAS accredited.

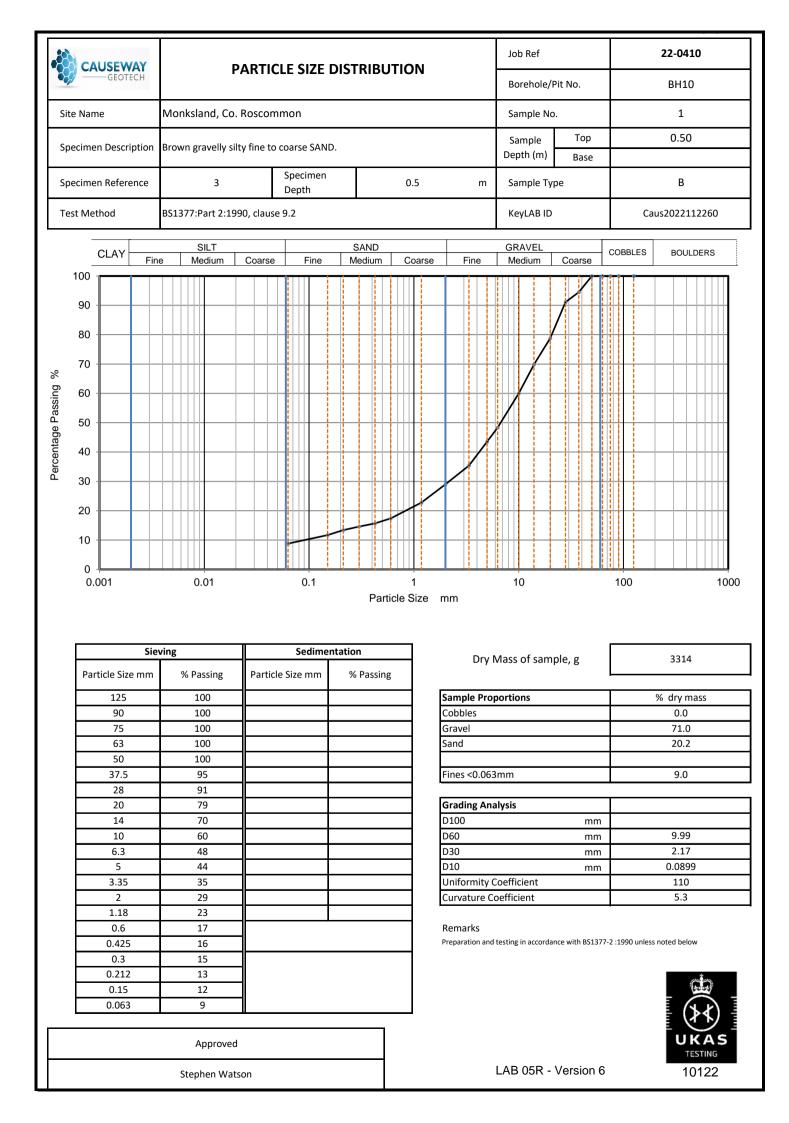
Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL – Subcontracted to Eurofins Chemtest Ltd (UKAS 2183)	pH Value of Soil		11
SOIL – Subcontracted to Eurofins Chemtest Ltd (UKAS 2183)	Sulphate Content water extract		11

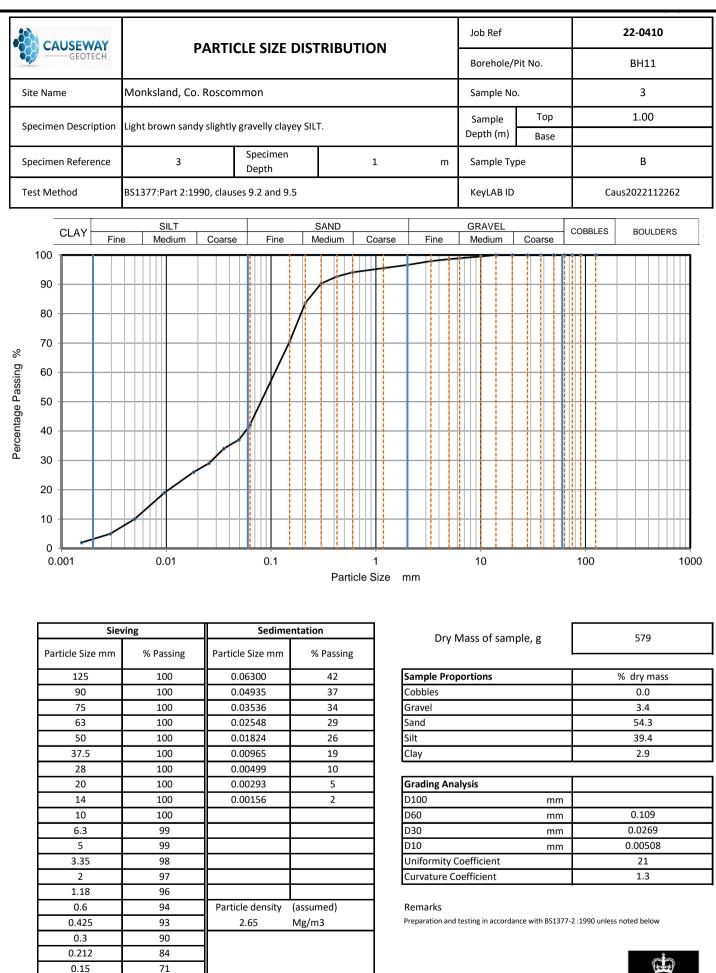
	USE GEC	WAY DTECH			Summar	y of C	of Classification Test Results								
Project No. 22-0	410		Project	Name		Monk	sland	l, Co. F	Roscomr	non					
Hole No.	Ref	Sar Top	nple Base	Туре	Specimen Description	Dens bulk Mg/m	dry	W %	Passing 425µm %	LL %	PL %	PI %	Particle density Mg/m3	Casagrande Classification	
BH01	2	0.50		D	Light brown slightly sandy silty CLAY.			27	99	48 -1pt	22	26		CI	
BH02	6	1.20		D	Light brown slightly sandy silty CLAY.			21	94	33 -1pt	18	15		CL	
BH03	1	0.50		В	Light brown sandy slightly gravelly silty CLAY.			11	35	30 -1pt	21	9		CL	
BH04	4	1.00		D	Light brown sandy slightly gravelly silty CLAY.			32	94	51 -1pt	24	27		СН	
BH05	2	0.50		D	Light brown sandy slightly gravelly silty CLAY.			28	98	37 -1pt	18	19		CI	
BH07	4	1.00		D	Light brown sandy slightly gravelly silty CLAY.			26	94	52 -1pt	23	29		СН	
BH08	4	1.00		D	Brown slightly gravelly clayey fine to coarse SAND.			7.1	18	23 -1pt	16	7		CL	
BH09A	2	0.50		D	Brown sandy slightly gravelly clayey SILT.			15	85	21 -1pt	16	5		ML	
BH10	2	0.50		D	Brown gravelly silty fine to coarse SAND.			11	28	50 -1pt	37	13		MI/MH	
BH11	4	1.00		D	Light brown sandy slightly gravelly clayey SILT.			18	92	21 -1pt	18	3		ML	
BH12	2	0.50		D	Light brown sandy slightly gravelly silty CLAY.			20	80	28 -1pt	21	7		CL	
All tests perfo	med i	n accord	lance wit	h BS1	377:1990 unless specified	otherwis	e	1	<u> </u>	<u> </u>	1	1	LAB	01R Version 6	
wd - wa	neasure ter displ	ment unles acement in water	s :	cas - C		e density nall pyknom s jar	eter	Date F 12/(Printed 06/2022	00:00	Appr		By Watson	UKAS TESTING 10122	

GEOTECH	n	ARTICLE SIZE	חוכדסופו ודיר		Job Ref			22-0410
- GLOTLON	P/	ARTICLE SIZE			Borehole/F	Pit No.		BH01
Site Name	Monksland, Co.	Roscommon			Sample No).		1
Specimen Description	Light brown slightl	y sandy silty CLAY.			Sample Depth (m)	Тор		0.50
Specimen Reference	3	Specimen	0	1.5 m	Sample Ty	Base		В
Test Method		Depth 10, clauses 9.2 and 9.1			KeyLAB ID		(a	aus2022112249
							Ca	1032022112245
CLAY Fin	SILT ne Medium	Coarse Fine	SAND Medium C	oarse Fine	GRAVEL Medium	Coarse	COBBLES	BOULDERS
100								
90		1						
80	/							
70								
2								
	+++++++//			┼┥╴┨╶╎╡╎┽				
60	//////////////////////////////////////							
50								
40								
30								
20								
10						_		
0								
Sie								
JIC	wing	Sedime	ntation	1				
	eving	Sedimer		Dry I	Mass of sam	ple, g		302
Particle Size mm	% Passing	Particle Size mm	% Passing			ple, g		
Particle Size mm 125	% Passing	Particle Size mm 0.06300	% Passing 96	Sample Pro		ple, g		% dry mass
Particle Size mm 125 90	% Passing 100 100	Particle Size mm 0.06300 0.03743	% Passing 96 91	Sample Pro Cobbles		ple, g		% dry mass 0.0
Particle Size mm 125	% Passing	Particle Size mm 0.06300	% Passing 96	Sample Pro		ple, g		% dry mass
Particle Size mm 125 90 75 63 50	% Passing 100 100 100 100 100 100	Particle Size mm 0.06300 0.03743 0.02734 0.02033 0.01517	% Passing 96 91 87 78 69	Sample Pro Cobbles Gravel Sand Silt		ple, g		% dry mass 0.0 0.3 3.3 79.5
Particle Size mm 125 90 75 63 50 37.5	% Passing 100 100 100 100 100 100 100	Particle Size mm 0.06300 0.03743 0.02734 0.02033 0.01517 0.00866	% Passing 96 91 87 78 69 47	Sample Pro Cobbles Gravel Sand		ple, g		% dry mass 0.0 0.3 3.3
Particle Size mm 125 90 75 63 50 37.5 28	% Passing 100 100 100 100 100 100 100 10	Particle Size mm 0.06300 0.03743 0.02734 0.02033 0.01517 0.00866 0.00460	% Passing 96 91 87 78 69 47 33	Sample Pro Cobbles Gravel Sand Silt Clay	portions	ple, g		% dry mass 0.0 0.3 3.3 79.5
Particle Size mm 125 90 75 63 50 37.5	% Passing 100 100 100 100 100 100 100	Particle Size mm 0.06300 0.03743 0.02734 0.02033 0.01517 0.00866	% Passing 96 91 87 78 69 47	Sample Pro Cobbles Gravel Sand Silt	portions	ple, g		% dry mass 0.0 0.3 3.3 79.5
Particle Size mm 125 90 75 63 50 37.5 28 20	% Passing 100 100 100 100 100 100 100 10	Particle Size mm 0.06300 0.03743 0.02734 0.02033 0.01517 0.00866 0.00460 0.00277	% Passing 96 91 87 78 69 47 33 21	Sample Prop Cobbles Gravel Sand Silt Clay Grading Ana D100 D60	portions			% dry mass 0.0 0.3 3.3 79.5 16.9 0.0121
Particle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3	% Passing 100 100 100 100 100 100 100 10	Particle Size mm 0.06300 0.03743 0.02734 0.02033 0.01517 0.00866 0.00460 0.00277	% Passing 96 91 87 78 69 47 33 21	Sample Pro Cobbles Gravel Sand Silt Clay Grading Ana D100 D60 D30	portions	mm mm		% dry mass 0.0 0.3 3.3 79.5 16.9
Particle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3 5	% Passing 100 100 100 100 100 100 100 10	Particle Size mm 0.06300 0.03743 0.02734 0.02033 0.01517 0.00866 0.00460 0.00277	% Passing 96 91 87 78 69 47 33 21	Sample Pro Cobbles Gravel Sand Silt Clay Grading Ana D100 D60 D30 D10	portions	mm		% dry mass 0.0 0.3 3.3 79.5 16.9 0.0121
Particle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3	% Passing 100 100 100 100 100 100 100 10	Particle Size mm 0.06300 0.03743 0.02734 0.02033 0.01517 0.00866 0.00460 0.00277	% Passing 96 91 87 78 69 47 33 21	Sample Pro Cobbles Gravel Sand Silt Clay Grading Ana D100 D60 D30 D10 Uniformity C	portions alysis	mm mm		% dry mass 0.0 0.3 3.3 79.5 16.9 0.0121
Particle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35	% Passing 100	Particle Size mm 0.06300 0.03743 0.02734 0.02033 0.01517 0.00866 0.00460 0.00277	% Passing 96 91 87 78 69 47 33 21	Sample Pro Cobbles Gravel Sand Silt Clay Grading Ana D100 D60 D30 D10	portions alysis	mm mm		% dry mass 0.0 0.3 3.3 79.5 16.9 0.0121
Particle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6	% Passing 100 99 99 99	Particle Size mm 0.06300 0.03743 0.02734 0.02033 0.01517 0.00866 0.00460 0.00277 0.00150 	% Passing 96 91 87 78 69 47 33 21 13 13	Sample Pro Cobbles Gravel Sand Silt Clay Grading And D100 D60 D30 D10 Uniformity C Curvature C	portions alysis Coefficient oefficient	mm mm mm		% dry mass 0.0 0.3 3.3 79.5 16.9 0.0121 0.00408
Particle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6 0.425	% Passing 100 99 99 99 99 99 99 99 99 99 99	Particle Size mm 0.06300 0.03743 0.02734 0.02033 0.01517 0.00866 0.00460 0.00277 0.00150 	% Passing 96 91 87 78 69 47 33 21 13	Sample Pro Cobbles Gravel Sand Silt Clay Grading And D100 D60 D30 D10 Uniformity C Curvature C	portions alysis	mm mm mm	-2 :1990 unles	% dry mass 0.0 0.3 3.3 79.5 16.9 0.0121 0.00408
Particle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6 0.425 0.3	% Passing 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 99 99 99 99 99 99 99 99 99 99 99 99 98	Particle Size mm 0.06300 0.03743 0.02734 0.02033 0.01517 0.00866 0.00460 0.00277 0.00150 	% Passing 96 91 87 78 69 47 33 21 13 13	Sample Pro Cobbles Gravel Sand Silt Clay Grading And D100 D60 D30 D10 Uniformity C Curvature C	portions alysis Coefficient oefficient	mm mm mm	-2 :1990 unless	% dry mass 0.0 0.3 3.3 79.5 16.9 0.0121 0.00408
Particle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6 0.425	% Passing 100 99 99 99 99 99 99 99 99 99 99	Particle Size mm 0.06300 0.03743 0.02734 0.02033 0.01517 0.00866 0.00460 0.00277 0.00150 	% Passing 96 91 87 78 69 47 33 21 13 13	Sample Pro Cobbles Gravel Sand Silt Clay Grading And D100 D60 D30 D10 Uniformity C Curvature C	portions alysis Coefficient oefficient	mm mm mm	-2 :1990 unless	% dry mass 0.0 0.3 3.3 79.5 16.9 0.0121 0.00408
Particle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6 0.425 0.3 0.212	% Passing 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 99 99 99 98 98	Particle Size mm 0.06300 0.03743 0.02734 0.02033 0.01517 0.00866 0.00460 0.00277 0.00150 	% Passing 96 91 87 78 69 47 33 21 13 13	Sample Pro Cobbles Gravel Sand Silt Clay Grading And D100 D60 D30 D10 Uniformity C Curvature C	portions alysis Coefficient oefficient	mm mm mm	-2 :1990 unles	% dry mass 0.0 0.3 3.3 79.5 16.9 0.0121 0.00408
Particle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6 0.425 0.3 0.212 0.15	% Passing 100 99 99 99 99 98 98 98	Particle Size mm 0.06300 0.03743 0.02734 0.02033 0.01517 0.00866 0.00460 0.00277 0.00150 	% Passing 96 91 87 78 69 47 33 21 13 13	Sample Pro Cobbles Gravel Sand Silt Clay Grading And D100 D60 D30 D10 Uniformity C Curvature C	portions alysis Coefficient oefficient	mm mm mm	-2 :1990 unles:	% dry mass 0.0 0.3 3.3 79.5 16.9 0.0121 0.00408

	<u>ہ</u> م	ARTICLE SIZE	די ופוסדצוח		Job Ref			22-0410
GEOTECH	P#	ARTICLE SIZE			Borehole/I	Pit No.		BH02
Site Name	Monksland, Co. R	Roscommon			Sample No).		5
Specimen Description	Light brown slightly	v sandy silty CLAY.			Sample Depth (m)	Top Base		1.20
Specimen Reference	3	Specimen Depth		1.2 m	Sample Ty			В
Test Method	BS1377:Part 2:1990		5		KeyLAB ID		Ca	us2022112251
CLAY	SILT		SAND		GRAVEL		COBBLES	BOULDERS
100 F	ne Medium	Coarse Fine	Medium	Coarse Fine	Medium	Coarse		
90								
80								
70								
\$								
60								
50								
40			_					
30								
20								
8								
10								
0.001	0.01	0.1		1	10	i <u>i i i</u> i	100	ب ــــــــــــــــــــــــــــــــــــ
Si	eving	Sedime	ntation	_				
				Drv	Mass of sam	nle g		256
Particle Size mm	% Passing	Particle Size mm	% Passing	Dry	Mass of sam	ple, g		256
125	100	0.06300	90	Sample Pro		ple, g		% dry mass
	5					ple, g		
125 90 75 63	100 100 100 100	0.06300 0.03658 0.02617 0.01913	90 89 87 82	Sample Pro Cobbles Gravel Sand		ple, g		% dry mass 0.0 2.5 7.4
125 90 75	100 100 100	0.06300 0.03658 0.02617	90 89 87	Sample Pro Cobbles Gravel		ple, g		% dry mass 0.0 2.5
125 90 75 63 50 37.5 28	100 100 100 100 100 100 100 100	0.06300 0.03658 0.02617 0.01913 0.01396 0.00783 0.00430	90 89 87 82 78 64 46	Sample Pro Cobbles Gravel Sand Silt Clay	portions	ple, g		% dry mass 0.0 2.5 7.4 67.0
125 90 75 63 50 37.5 28 20 14	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	0.06300 0.03658 0.02617 0.01913 0.01396 0.00783	90 89 87 82 78 64	Sample Pro Cobbles Gravel Sand Silt Clay Grading An D100	portions	ple, g		% dry mass 0.0 2.5 7.4 67.0 23.1
125 90 75 63 50 37.5 28 20 14 10	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	0.06300 0.03658 0.02617 0.01913 0.01396 0.00783 0.00430 0.00267	90 89 87 82 78 64 46 29	Sample Pro Cobbles Gravel Sand Silt Clay Grading An D100 D60	portions	mm		% dry mass 0.0 2.5 7.4 67.0 23.1 0.00684
$ \begin{array}{r} 125 \\ 90 \\ 75 \\ 63 \\ 50 \\ 37.5 \\ 28 \\ 20 \\ 14 \\ 10 \\ 6.3 \\ 5 \end{array} $	100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 98	0.06300 0.03658 0.02617 0.01913 0.01396 0.00783 0.00430 0.00267	90 89 87 82 78 64 46 29	Sample Pro Cobbles Gravel Sand Silt Clay Grading An D100 D60 D30 D10	portions	mm		% dry mass 0.0 2.5 7.4 67.0 23.1
125 90 75 63 50 37.5 28 20 14 10 6.3	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99	0.06300 0.03658 0.02617 0.01913 0.01396 0.00783 0.00430 0.00267	90 89 87 82 78 64 46 29	Sample Pro Cobbles Gravel Sand Silt Clay Grading An D100 D60 D30 D10 Uniformity	alysis	mm mm		% dry mass 0.0 2.5 7.4 67.0 23.1 0.00684
$ \begin{array}{r} 125 \\ 90 \\ 75 \\ 63 \\ 50 \\ 37.5 \\ 28 \\ 20 \\ 14 \\ 10 \\ 6.3 \\ 5 \\ 3.35 \\ 2 \\ 1.18 \\ \end{array} $	100 100 100 100 100 100 100 100 100 100 100 100 100 99 98 98 98 98 97	0.06300 0.03658 0.02617 0.01913 0.01396 0.00783 0.00430 0.00267 0.00147	90 89 87 82 78 64 46 29 17	Sample Pro Cobbles Gravel Sand Silt Clay Grading An D100 D60 D30 D10 Uniformity Curvature C	alysis	mm mm		% dry mass 0.0 2.5 7.4 67.0 23.1 0.00684
125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2	100 100 100 100 100 100 100 100 100 100 100 100 100 99 98 98 98 98	0.06300 0.03658 0.02617 0.01913 0.01396 0.00783 0.00430 0.00267 0.00147	90 89 87 82 78 64 46 29 17 17 (assumed)	Sample Pro Cobbles Gravel Sand Silt Clay Grading An D100 D60 D30 D10 Uniformity Curvature C	alysis	mm mm mm		% dry mass 0.0 2.5 7.4 67.0 23.1 0.00684 0.00275
$ \begin{array}{r} 125 \\ 90 \\ 75 \\ 63 \\ 50 \\ 37.5 \\ 28 \\ 20 \\ 14 \\ 10 \\ 6.3 \\ 5 \\ 3.35 \\ 2 \\ 1.18 \\ 0.6 \\ 0.425 \\ 0.3 \\ \end{array} $	100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 98 98 97 96 93 93	0.06300 0.03658 0.02617 0.01913 0.01396 0.00783 0.00430 0.00267 0.00147	90 89 87 82 78 64 46 29 17	Sample Pro Cobbles Gravel Sand Silt Clay Grading An D100 D60 D30 D10 Uniformity Curvature C	alysis Coefficient Coefficient	mm mm mm		% dry mass 0.0 2.5 7.4 67.0 23.1 0.00684 0.00275
$ \begin{array}{r} 125 \\ 90 \\ 75 \\ 63 \\ 50 \\ 37.5 \\ 28 \\ 20 \\ 14 \\ 10 \\ 6.3 \\ 5 \\ 3.35 \\ 2 \\ 1.18 \\ 0.6 \\ 0.425 \\ \end{array} $	100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 98 98 98 97 96 93	0.06300 0.03658 0.02617 0.01913 0.01396 0.00783 0.00430 0.00267 0.00147	90 89 87 82 78 64 46 29 17 17 (assumed)	Sample Pro Cobbles Gravel Sand Silt Clay Grading An D100 D60 D30 D10 Uniformity Curvature C	alysis Coefficient Coefficient	mm mm mm		% dry mass 0.0 2.5 7.4 67.0 23.1 0.00684 0.00275
$ \begin{array}{r} 125 \\ 90 \\ 75 \\ 63 \\ 50 \\ 37.5 \\ 28 \\ 20 \\ 14 \\ 10 \\ 6.3 \\ 5 \\ 3.35 \\ 2 \\ 1.18 \\ 0.6 \\ 0.425 \\ 0.3 \\ 0.212 \\ \end{array} $	100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 98 98 97 96 93 93 92	0.06300 0.03658 0.02617 0.01913 0.01396 0.00783 0.00430 0.00267 0.00147	90 89 87 82 78 64 46 29 17 17 (assumed)	Sample Pro Cobbles Gravel Sand Silt Clay Grading An D100 D60 D30 D10 Uniformity Curvature C	alysis Coefficient Coefficient	mm mm mm		% dry mass 0.0 2.5 7.4 67.0 23.1 0.00684 0.00275
$ \begin{array}{r} 125 \\ 90 \\ 75 \\ 63 \\ 50 \\ 37.5 \\ 28 \\ 20 \\ 14 \\ 10 \\ 6.3 \\ 5 \\ 3.35 \\ 2 \\ 1.18 \\ 0.6 \\ 0.425 \\ 0.3 \\ 0.212 \\ 0.15 \\ \end{array} $	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 98 98 98 98 97 96 93 93 92 92	0.06300 0.03658 0.02617 0.01913 0.01396 0.00783 0.00430 0.00267 0.00147	90 89 87 82 78 64 46 29 17 17 (assumed)	Sample Pro Cobbles Gravel Sand Silt Clay Grading An D100 D60 D30 D10 Uniformity Curvature C	alysis Coefficient Coefficient	mm mm mm		% dry mass 0.0 2.5 7.4 67.0 23.1 0.00684 0.00275

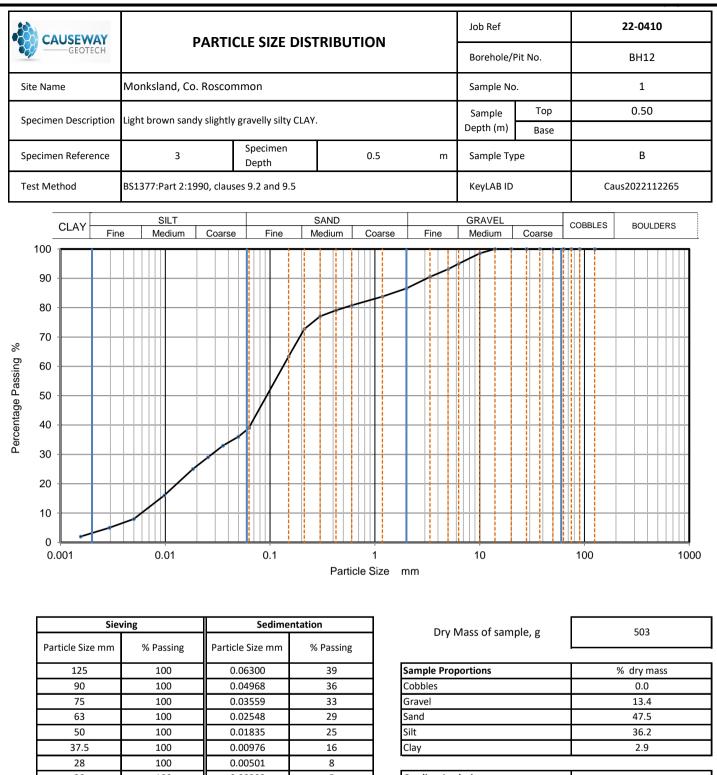



LAB 05R - Version 6


10122

Approved

Stephen Watson


LAB 05R - Version 6

Approved

42

0.063

Stephen Watson

	_		_
125	100	0.06300	39
90	100	0.04968	36
75	100	0.03559	33
63	100	0.02548	29
50	100	0.01835	25
37.5	100	0.00976	16
28	100	0.00501	8
20	100	0.00293	5
14	100	0.00156	2
10	99		
6.3	95		
5	93		
3.35	91		
2	87		
1.18	84		
0.6	81	Particle density	(assumed)
0.425	79	2.65	Mg/m3
0.3	77		
0.212	73		
0.15	63		
0.063	39		

Grading Analysis		
D100	mm	
D60	mm	0.133
D30	mm	0.0271
D10	mm	0.00582
Uniformity Coefficient		23
Curvature Coefficient		0.95

Remarks

Preparation and testing in accordance with BS1377-2 :1990 unless noted below

Approved

Stephen Watson

LAB 05R - Version 6

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	22-45728-1		
Initial Date of Issue:	30-Nov-2022		
Client	Causeway Geotech Ltd		
Client Address:	8 Drumahiskey Road Balnamore Ballymoney County Antrim BT53 7QL		
Contact(s):	Alistair McQuat Carin Cornwall Celine Rooney Colm Hurley Darren O'Mahony Gabriella Horan Joe Gervin John Cameron Lucy Newland Martin Gardiner Matthew Gilbert Neil Haggan Paul Dunlop Sean Ross Stephen Franey Stephen McCracken Stephen Watson		
Project	22-0410 Monksland, Co Roscommon		
Quotation No.:		Date Received:	28-Nov-2022
Order No.:		Date Instructed:	28-Nov-2022
No. of Samples:	11		
Turnaround (Wkdays):	7	Results Due:	06-Dec-2022
Date Approved:	30-Nov-2022		
Approved By:			
sant	-		

Details:

001

Stuart Henderson, Technical Manager

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

<u> Results - Soil</u>

Project: 22-0410 Monksland, Co Roscommon

Client: Causeway Geotech Ltd	Chemtest Job No.:			22-45728	22-45728	22-45728	22-45728	22-45728	22-45728	22-45728	22-45728	22-45728	
Quotation No.:	Chemtest Sample ID.:				1554092	1554093	1554094	1554095	1554096	1554097	1554098	1554099	1554100
Order No.:	Client Sample Ref .:				2	6	1	4	2	4	4	2	2
	Sample Location:			BH01	BH02	BH03	BH04	BH05	BH07	BH08	BH09A	BH10	
	Sample Type:			SOIL	SOIL								
	Top Depth (m): Date Sampled:		0.50	1.20	0.50	1.00	0.50	1.00	1.00	0.50	0.50		
			25-Nov-2022										
Determinand	Accred.	SOP	Units	LOD									
Moisture	N	2030	%	0.020	17	16	6.8	17	15	14	6.5	13	11
pH	U	2010		4.0	8.0	8.2	8.1	8.0	7.4	7.2	8.3	6.3	8.0
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010

Project: 22-0410 Monksland, Co Roscommon

Client: Causeway Geotech Ltd		Che	ntest Jo	ob No.:	22-45728	22-45728
Quotation No.:	Chemtest Sample ID.:			1554101	1554102	
Order No.:		Client Sample Ref.:		4	2	
		Sample Location:			BH11	BH12
	Sample Type:			SOIL	SOIL	
	Top Depth (m):			1.00	0.50	
		Date Sampled:			25-Nov-2022	25-Nov-2022
Determinand	Accred.	SOP	Units	LOD		
Moisture	Ν	2030	%	0.020	13	14
рН	U	2010		4.0	7.5	6.9
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	< 0.010

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

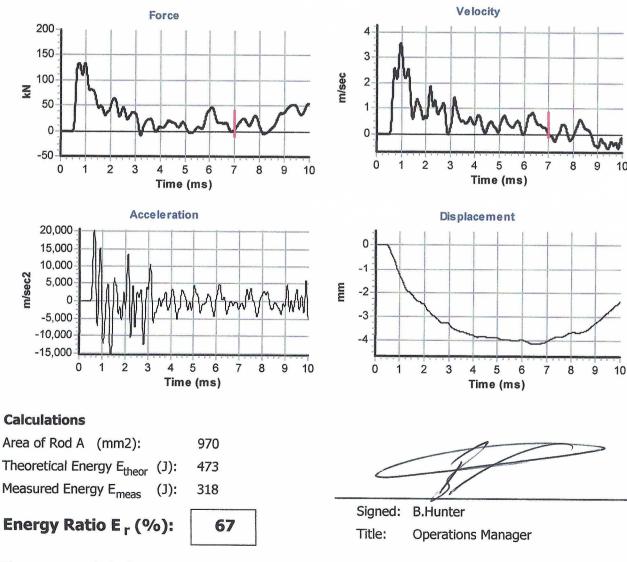
APPENDIX D SPT HAMMER ENERGY MEASUREMENT REPORT

Dynamic Sampling Uk Ltd Unit 8 Victory Park Victory Road Derby DE24 8ZF

Instrumented Rod Data

Diameter d _r (mm):	54
Wall Thickness t _r (mm):	6.5
Assumed Modulus E_a (GPa):	208
Accelerometer No.1:	62901
Accelerometer No.2:	62902

Hammer Energy Test Report


in accordance with BSEN ISO 22476-3:2005

Hammer Ref:	D130	(Asset No. 1411)
Test Date:	25/04,	/2022
Report Date:	25/04,	/2022
File Name:	D130.	spt
Test Operator:	B.HUN	ITER

Hammer Information

Hammer Mass	m (kg):	63.5
Falling Height	h (mm):	760
String Length L	(m):	10.0

Comments / Location

The recommended calibration interval is 12 months