

REPORT ON:

Planning Application -New Library Boyle

CLIENT:

Roscommon CoCo

LOCATION:

Boyle, Co. Roscommon.

Northgate Street, Athlone, Co. Westmeath Tel: +353 90 6477261 E-mail: info@jkillian.ie Website: www.jkillian.ie

Report No.21023-KCE-RP-C-00-0001

Planning Proposal New Library Boyle

PLANNING APPLICATION

Document Title: Planning Proposal New Library Boyle

Document Ref(s): 21023-KCE-RP-C-00-0001

Date	Edition/Rev	Status	Originator	Checked	Approved
24th November					
2021	P01	Planning	N Murphy	J. Killian	J. Killian
02nd February					
2022	P02	Planning	N Murphy	J. Killian	J. Killian

Contents:

1.0 Introduction to Drainage

1.1 Site Location

2.0 Water Supply

- 2.1 Existing Services
- 2.2 Proposed Services
- 2.3 Water Consumption

3.0 Foul Water

- 3.1 Existing Services
- 3.2 Proposed Services
- 3.3 Estimate of foul/wastewater flows

4.0 Surface Water

- 4.1 Existing Services
- 4.2 Proposed Services
- 4.3 Attenuation Details

APPENDICES:

Appendix A: Attenuation / SUDS Calculations Appendix B: Attenuation & Hydrobrake Details Appendix C: TIDEFLEX TF-1 VALVE

1 Introduction to Drainage

The development will consist of the construction of a new Library building behind the existing Royal Hotel in Boyle, Co. Roscommon along with all ancillary site works.

1.1 Site Location

The site is located to the rear of the existing Royal Hotel in Boyle, Co. Roscommon as shown on the site location map below. The site is adjacent to the River Boyle to the north.

Figure 1: Site Location

2 Water Supply

2.1 Existing Services

There is an existing 100mm uPVC Watermain in the Carrick Road to the south of the site.

2.2 Proposed Services

It is proposed to make a new connection to the existing water main on the Carrick Road near the existing petrol station. A new 125(OD) HDPE pipe will be provided to service the proposed development.

It is proposed to install Electromagnetic Flowmeter or similar approved by Irish Water on the new watermain. The proposed watermain within the site is fully valved, with no dead ends all loops having a minimum of one hydrant within the loop. All hydrants have been spaced in accordance with Irish Water Guidelines.

All sluice valves, air valves and hydrants to be as per site layout drawing. Refer to the Irish Water details for sluice valves, hydrants, air valves and watermain details etc

Refer to drawing 21023-KCE-00-DR-C-00-0001 for proposed watermain layout.

2.3 Water Consumption

Water consumption for the development is calculation below as per Irish Water Guidelines:

New Library

Office Staff 10 (PE) x 100 l/day = 1,000 litres Library Visitors 100 (PE) x 10 l/day = 1,000 litres

Total = 2,000 litres

Average Demand = 2,000 / (12x60x60) = 0.05 l/s Peak Demand = 0.05 l/s x 1.75 = 0.08 l/s

3 Foul Water

3.1 Existing Services

The is an existing foul sewer drainage to the rear of the Royal Hotel building which is currently being redeveloped. This runs to the main Irish Water sewer on the Carrick Road.

3.2 **Proposed Services**

It is proposed to install local foul sewer drainage around the new Library Building and discharge via gravity to the existing foul sewer manhole to the rear of the Royal Hotel as per drawing 21023-KCE-00-DR-C-00-0001 in line with Irish Water Guidelines and Code of Practice.

Foul sewers have been designed in accordance with the Building Regulations TGD Document H and in accordance with the principles and methods set out in BS8301: 1985 and the DoELG Recommendations for Site Development Works. For IW to take charge, the developer provided infrastructure is to comply with IW-CDS-5030-1,2,3.

The following criteria have been applied;

	0	Discharge units –	As per Irish Water Guidelines
•		Pipe Ks	0.6mm
•		Minimum Velocity	0.75m/s
•		Maximum Velocity	3.0m/s

3.3 Estimate of foul/wastewater flows

New Library

Office Staff 10 (PE) x 100 l/day = 1,000 litres Library Visitors 100 (PE) x 10 l/day = 1,000 litres

Total = 2,000 litres

Average Demand = 2,000 / (12x60x60) = 0.05 I/sPeak Demand = 0.05 l/s x 1.75 = 0.08 l/s

4 Surface Water

4.1 Existing Services

There is no existing surface sewer network servicing the development.

4.2 **Proposed Services**

The surface water drainage is designed in accordance with GDSDS with 20% climate change factored. It is proposed that all surface water run-off from the new development will be collected by gravity drainage and discharged to a Wavin Aquacell attenuation tank. The water is then to be discharged to the existing Boyle River with restricted flow of 2.0 l/s provided by a hydrobrake in the final manhole. There will also be a TIDEFLEX TF-1 valve installed on the outfall pipe to prevent water from coming back into the network, refer to appendix C for details of this valve.

An allowable surface water outflow of 6.5 l/s/ha was calculated for the site using the modified rational method and the following parameters were applied;

- Roads, pavements, driveways 100% impermeable
- Roofs •
- Green Areas
- 100% impermeable
- 10% impermeable
- Return period
- Pipe Roughness (Ks)

1:100 years (20% climate change allowed for)

- 0.6 mm

An allowable outflow of 5.0 litres / sec / hectare is applied to the developed area 0.053 H. The flow will be restricted by a hydrobrake in the final manhole.

Using this outflow, the attenuation for the 1 in 100-year event was calculated. Please see attached attenuation calculations in Appendix A including Qbar calculation & stormwater tank sizing. It is proposed to provide 32 m3 capacity wavin aquacell attenuation tank. The site dimensions of the attenuation area will be 10 x 4 x 0.8 m dp. We note that the attenuation has been sized to cater for 20% climate change.

4.3 Attenuation Details

The outflow from the site area is restricted to 5.0 l/s/ha. Using this outflow, the attenuation for different return periods were calculated,

Hardstanding and Roof area = 530 m²

Catchment Area:	Impermeable Area	: 0.053 Ha
	Allowable Outflow	: 5.0 l/s Ha
	Calculated Allowable discharge	: 0.27 l/s
	Maximum storage required	: 27m³
	Return Period	: 100 years
	Storm duration	: 720min
	Allow for 20% Climate Change	: 32m³

SuDS design summary:

• Surface water runoff from roofs and hardstanding areas shall be routed to wavin aquacell attenuation / infiltration systems.

Appendix A: Attenuation / SUDS Calculations

Met Eireann Return Period Rainfall Depths for sliding Durations Irish Grid: Easting: 180214, Northing: 302565,

	Interval						Years								
DURATION	6months, lyear,	2,	З,	4,	5,	10,	20,	30,	50,	75,	100,	150,	200,	250,	500,
5 mins	2.6, 3.6,	4.2,	5.0,	5.5,	5.9,	7.3,	8.8,	9.8,	11.2,	12.4,	13.4,	14.8,	15.9,	16.9,	N/A ,
10 mins	3.7, 5.1,	5.8,	6.9,	7.7,	8.3,	10.2,	12.3,	13.6,	15.6,	17.3,	18.6,	20.6,	22.2,	23.5,	N/A ,
15 mins	4.3, 6.0,	6.9,	8.2,	9.0,	9.7,	11.9,	14.4,	16.1,	18.3,	20.3,	21.9,	24.3,	26.1,	27.6,	N/A ,
30 mins	5.7, 7.8,	8.9,	10.5,	11.6,	12.4,	15.1,	18.1,	20.1,	22.8,	25.2,	27.1,	29.9,	32.1,	33.9,	N/A ,
1 hours	7.5, 10.2,	11.5,	13.5,	14.9,	15.9,	19.2,	22.8,	25.2,	28.4,	31.3,	33.5,	36.8,	39.4,	41.5,	N/A ,
2 hours	10.0, 13.2,	14.9,	17.4,	19.1,	20.3,	24.3,	28.7,	31.5,	35.4,	38.8,	41.4,	45.3,	48.3,	50.8,	N/A ,
3 hours	11.7, 15.5,	17.4,	20.2,	22.1,	23.5,	27.9,	32.8,	36.0,	40.3,	44.0,	46.9,	51.2,	54.5,	57.2,	N/A ,
4 hours	13.2, 17.3,	19.4,	22.4,	24.4,	26.0,	30.8,	36.1,	39.5,	44.1,	48.1,	51.2,	55.8,	59.3,	62.2,	N/A ,
6 hours	15.5, 20.2,	22.6,	26.0,	28.3,	30.0,	35.4,	41.3,	45.0,	50.1,	54.6,	57.9,	63.0,	66.8,	70.0,	N/A ,
9 hours	18.2, 23.6,	26.3,	30.2,	32.7,	34.6,	40.7,	47.2,	51.4,	57.0,	61.9,	65.6,	71.1,	75.4,	78.8,	N/A ,
12 hours	20.5, 26.3,	29.3,	33.5,	36.2,	38.3,	44.9,	51.9,	56.4,	62.4,	67.7,	71.6,	77.5,	82.0,	85.7,	N/A ,
18 hours	24.1, 30.7,	34.1,	38.8,	41.9,	44.3,	51.6,	59.4,	64.3,	71.0,	76.7,	81.1,	87.6,	92.5,	96.5,	N/A ,
24 hours	27.1, 34.3,	38.0,	43.1,	46.5,	49.0,	56.9,	65.3,	70.6,	77.8,	83.9,	88.5,	95.5,	100.7,	104.9,	119.3,
2 days	35.8, 44.0,	48.0,	53.6,	57.2,	59.8,	68.1,	76.8,	82.1,	89.3,	95.4,	99.9,	106.7,	111.7,	115.8,	129.4,
3 days	43.2, 52.1,	56.4,	62.4,	66.2,	69.0,	77.7,	86.6,	92.1,	99.4,	105.5,	110.1,	116.8,	121.8,	125.9,	139.3,
4 days	50.0, 59.6,	64.1,	70.4,	74.4,	77.3,	86.3,	95.4,	101.1,	108.5,	114.7,	119.3,	126.1,	131.1,	135.1,	148.5,
6 days	62.5, 73.0,	78.0,	84.8,	89.1,	92.2,	101.7,	111.3,	117.1,	124.8,	131.2,	135.9,	142.7,	147.8,	151.9,	165.2,
8 days	74.1, 85.4,	90.7,	97.9,	102.4,	105.7,	115.6,	125.6,	131.6,	139.5,	146.0,	150.8,	157.7,	162.8,	166.9,	180.3,
10 days	85.0, 97.1,	102.6,	110.2,	114.9,	118.3,	128.6,	138.9,	145.0,	153.1,	159.7,	164.5,	171.6,	176.7,	180.8,	194.2,
12 days	95.6, 108.2,	114.1,	121.9,	126.8,	130.3,	140.9,	151.4,	157.7,	165.8,	172.5,	177.4,	184.6,	189.8,	193.9,	207.3,
16 days	116.0, 129.6,	135.8,	144.1,	149.2,	153.0,	164.0,	174.9,	181.4,	189.7,	196.6,	201.6,	208.8,	214.0,	218.2,	231.6,
20 days	135.6, 150.0,	156.5,	165.2,	170.5,	174.4,	185.8,	196.9,	203.5,	212.0,	219.0,	224.0,	231.3,	236.5,	240.7,	254.1,
25 days	159.5, 174.6,	181.4,	190.4,	195.9,	199.9,	211.6,	223.0,	229.7,	238.3,	245.3,	250.4,	257.7,	263.0,	267.1,	280.5,
NOTES:															

N/A Data not available

These values are derived from a Depth Duration Frequency (DDF) Model

For details refer to:

'Fitzgerald D. L. (2007), Estimates of Point Rainfall Frequencies, Technical Note No. 61, Met Eireann, Dublin', Available for download at www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf

24th	November 2021	Propos	ed Library Boyle			
Page	1 of 1	Designed By. N	. Murphy B.E. MIEI	1		
	e out flow for a cate 108*(area)^0.89*(sa	chment <,=,24Ha in are	а			
	100 (area) 0.09 (Sa					
Parameter	Description		Units		Value	_
<u></u>					0.00050	4
Area= Saar=	Total Site Area Standard Annual Rai	ofoll	km ²		0.00053	-
Saar= Soil	Standard Annual Rai		mm		1085 0.3	-
		201100110110 0100			0.0	-1
Qbar=	Mean annual peak flo	W	m ³ /s]	0.00034	m³/Sec
Qbar=	Mean annual peak flo	W	m ³ /s	r I	0.00034	m ³ /Sec
Qbar=	Mean annual peak flo	W		r		_
	Mean annual peak flo			r I		_
	ble ouflow form total sit			r	0.3426	Litre/sec
Qbar = Allowa	ble ouflow form total sit			r	0.3426	Litre/sec

Date: 24th November 2021	Proposed L	ibrary boyle	
21023 PAGE 1 OF 2	Designed By.	NM	
EXTREME RAINFALL RETUR			

				Return Per	iod in Years				
Duration	0.5	1	2	5	10	20	30	50	100
5	2.6	3.6	4.2	5.9	7.3	8.8	9.8	11.2	13.4
10	3.7	5.1	5.8	8.3	10.2	12.3	13.6	15.6	18.6
15	4.3	6.0	6.9	9.7	11.9	14.4	16.1	18.3	21.9
30	5.7	7.8	8.9	12.4	15.1	18.1	20.1	22.8	27.1
60	7.5	10.2	11.5	15.9	19.2	22.8	25.2	28.4	33.5
120	10.0	13.2	14.9	20.3	24.3	28.7	31.5	35.4	41.4
240	13.2	17.3	19.4	26.0	30.8	36.1	39.5	44.1	51.2
360	15.5	20.2	22.6	30.0	35.4	41.3	45.0	50.1	57.9
720	20.5	26.3	29.3	38.3	44.9	51.9	56.4	62.4	71.6
1,440	27.1	34.3	38.0	49.0	56.9	65.3	70.6	77.8	88.5

Proposed Development Site Area =	0.05	ha
Allowable Outflow per hectare =	5.00	Litre/sec/ha

ate: 24th N	November 2	021	D .		h a da			ΙΔΝ
				osed Library	-			ING ENGINEER
21023			Designed E	Sy.	NM			
AGE 2 OF	· 2							
		ORAGE : FO						
roposed D	evelopment	Site Area =		0.053	ha]		
						J		
Proposed Ir	npermeable	Area						
		ces & Roofs		0.05	100%			0.053
				0.00				
otal Imperi	meable Area	a						0.053
llouroble O	Nutflow:			E 00		1		
Ilowable O	outflow =				Litre/sec/ha			
llowable C	outflow =			5.00 0.27	Litre/sec/ha I/s]		
llowable C	Outflow =]		
<u>Illowable C</u>	Putflow =]		
llowable C	outflow =]		
				0.27]		
		ecorded in <i>i</i>	Athlone 1 ir	0.27]	= 10,000m ²	
ainfall Inte	ensity as R			0.27 0.27 0.27 0.27	I/s]		
		ecorded in <i>i</i> Intensity	Athlone 1 ir Rainfall	0.27 1000 Proposed Imperm.] 1 Hectare	= 10,000m ² Storage Required	
tainfall Int Duration	ensity as R Rainfall	Intensity	Rainfall	0.27 1000 Proposed Imperm. Area	I/s Proposed Run-off	1 Hectare Allowable Outflow	Storage Required	
Rainfall Int o Duration (min)	ensity as R Rainfall (mm)	Intensity (mm/hr)	Rainfall (m ³ /ha)	0.27 1000 Proposed Imperm. Area (ha)	I/s Proposed Run-off (m ³)	<u>1 Hectare</u> Allowable Outflow (m ³)	Storage Required (m ³)	
Cainfall Int Duration (min) 5	ensity as R Rainfall (mm) 13.4	Intensity (mm/hr) 160.80	Rainfall (m ³ /ha) 134	0.27 1000 Proposed Imperm. Area (ha) 0.053	I/s Proposed Run-off (m ³) 7	1 Hectare Allowable Outflow (m ³) 0	Storage Required (m ³) 7	
Cainfall Int Duration (min) 5 10	<mark>ensity as R</mark> Rainfall (mm) 13.4 18.6	Intensity (mm/hr) 160.80 111.60	Rainfall (m ³ /ha) 134 186	0.27 0.27 0.27 0.27 0.053 0.053 0.053	I/s Proposed Run-off (m ³) 7 10	<u>1 Hectare</u> Allowable Outflow (m ³) 0 0	Storage Required (m ³) 7 10	
Cainfall Inte Duration (min) 5 10 15	ensity as R Rainfall (mm) 13.4 18.6 21.9	Intensity (mm/hr) 160.80 111.60 87.60	Rainfall (m ³ /ha) 134 186 219	0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27	I/s Proposed Run-off (m ³) 7 10 12	1 Hectare Allowable Outflow (m ³) 0 0 0	Storage Required (m ³) 7 10 11	
Cainfall Inte Duration (min) 5 10 15 30	ensity as R Rainfall (mm) 13.4 18.6 21.9 27.1	Intensity (mm/hr) 160.80 111.60 87.60 54.20	Rainfall (m ³ /ha) 134 186 219 271	0.27 0.27	I/s Proposed Run-off (m ³) 7 10 12 14	<u>1 Hectare</u> Allowable Outflow (m ³) 0 0	Storage Required (m ³) 7 10 11 14	
Cainfall Inte Duration (min) 5 10 15	ensity as R Rainfall (mm) 13.4 18.6 21.9	Intensity (mm/hr) 160.80 111.60 87.60 54.20 33.50	Rainfall (m ³ /ha) 134 186 219 271 335	0.27 0.25 0.05	I/s Proposed Run-off (m ³) 7 10 12 14 18	<u>1 Hectare</u> Allowable Outflow (m ³) 0 0 0 0 1	Storage Required (m ³) 7 10 11 14 14 17	
Cainfall Internation	ensity as R Rainfall (mm) 13.4 18.6 21.9 27.1 33.5	Intensity (mm/hr) 160.80 111.60 87.60 54.20	Rainfall (m ³ /ha) 134 186 219 271	0.27 0.27	I/s Proposed Run-off (m ³) 7 10 12 14	<u>1 Hectare</u> Allowable Outflow (m ³) 0 0 0 0 0	Storage Required (m ³) 7 10 11 14 17 20	
Cainfall Int Duration (min) 5 10 15 30 60 120	ensity as R Rainfall (mm) 13.4 18.6 21.9 27.1 33.5 41.4	Intensity (mm/hr) 160.80 111.60 87.60 54.20 33.50 20.70	Rainfall (m ³ /ha) 134 186 219 271 335 414	0.27 0.053 0.055 0.0	I/s Proposed Run-off (m ³) 7 10 12 14 18 22	1 Hectare Allowable Outflow (m ³) 0 0 0 0 1 2	Storage Required (m ³) 7 10 11 14 14 17	
Rainfall Intent Duration (min) 5 10 15 30 60 120 240	ensity as R Rainfall (mm) 13.4 18.6 21.9 27.1 33.5 41.4 51.2	Intensity (mm/hr) 160.80 111.60 87.60 54.20 33.50 20.70 12.80	Rainfall (m ³ /ha) 134 186 219 271 335 414 512	0.27 0.27 0.27 0.27 0.053 0.055 0.055 0.055	I/s Proposed Run-off (m ³) 7 10 12 14 18 22 27	1 Hectare Allowable Outflow (m ³) 0 0 0 0 1 2 4	Storage Required (m ³) 7 10 11 14 17 20 23	

Maximum Storage Required =

Add 20% for Climate Change

32 m³

27

 m^3

Appendix B: Wavin Aquacell and Hydrobrake Details

AquaCell Plus-R

Product description

AquaCell Plus-R has been designed primarily for use in applications where inspectability is required, and is suitable for use in all applications from landscaped areas to heavily trafficked areas.

Technical specification

Product code / SAP code	6LB250 / 4064832	Void ratio	95%
Colour	Black	Material	Recycled PP
Dimensions	1m x 0.5m x 0.4m	Vertical loading	70.2 tonnes/m² (702 kN/m²)
Weight	12.7kg	Lateral loading	15.1 tonnes/m² (151 kN/m²)
Storage volume	190 litres		

Maximum installation depths

		Maximum depth o	of installation – to	base of units (m)1	
Typical soil type	Soil weight kN/m ³	Angle of internal friction φ (degrees) ^{2, 3}	Landscaped areas	Vehicle mass <9 tonnes ^{4, 5}	Vehicle mass <44 tonnes
Over consolidated stiff clay	20	24	4.67	4.42	4.17
Silty sandy clay	19	26	5.03	4.78	4.53
Loose sand and gravel	18	30	5.86	5.61	5.36
Medium dense sand and gravel	19	34	6.87	6.62	6.37
Dense sand and gravel	20	38	7.82	7.57	7.30

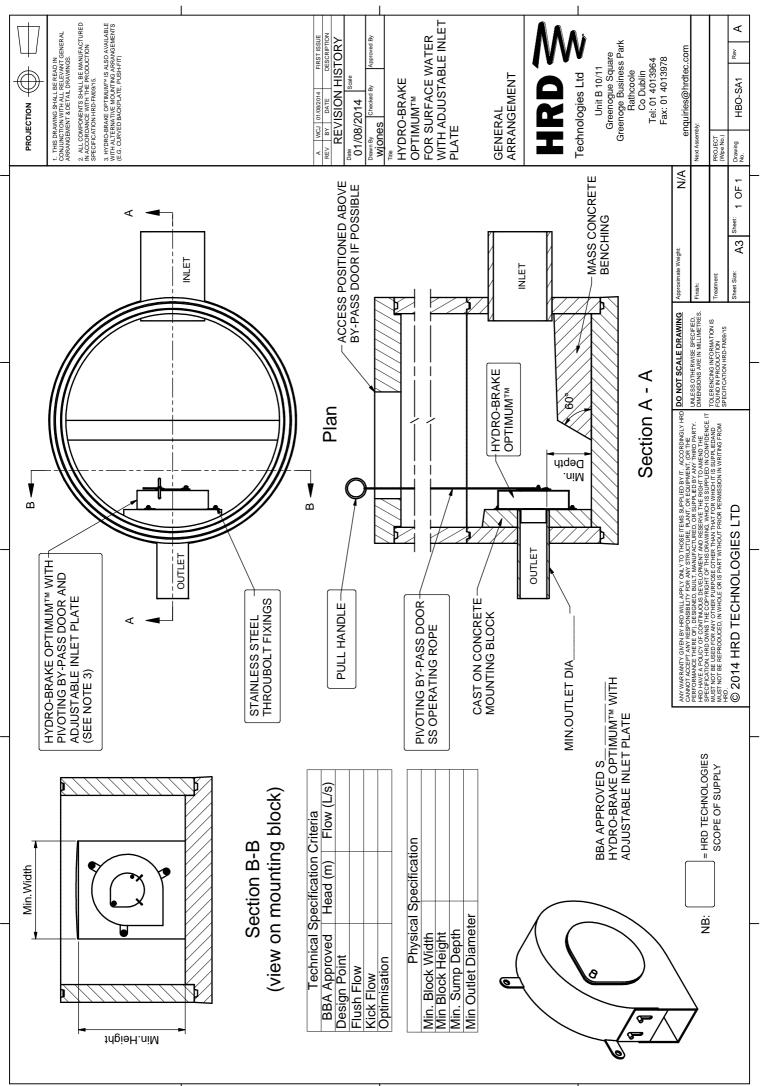
Minimum cover depths

	Landscaped areas	Car parks with vehicle mass <3 tonnes⁵	Car parks with vehicle mass <9 tonnes	Car parks with vehicle mass <12 tonnes	Low speed roads with vehicle mass <60 tonnes
Minimum cover depth (m)	0.30	0.50	0.69	0.81	1.30

1. Without groundwater present below base of units - AquaCell Plus-R may be used where groundwater is present, contact Wavin for technical advice.

2. Loosening of dense sand or softening of clay by water can occur during installation. The designer should allow for any such likely effects when choosing an appropriate value of φ.

The design is very sensitive to small changes in the assumed value of φ, therefore, it should be confirmed by a chartered geotechnical engineer. In clay soils, it may be possible to utilise cohesion in some cases.


4. Applicable for car parks or other areas trafficked only by cars or occasional refuse collection trucks or similar vehicles (typically one per week).

5. This category should be used when considering landscaped areas that may be trafficked by ride on mowers.

Assumptions made:

Ground surface is horizontal

• Shear planes or other weaknesses are not present within the structure of the soil

I

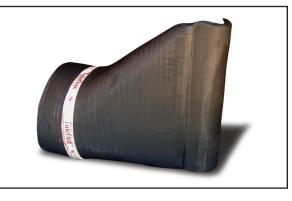
Appendix C: TIDEFLEX TF-1 VALVE

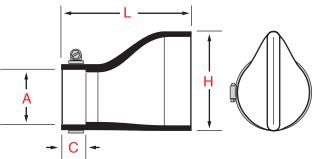
Technical Data

Series TF-1—Tideflex® Check Valve

Features & Benefits

- Ideal for manhole installations
- Lightweight, all-elastomer design
- Seals around entrapped solids
- Cost-effective, maintenance-free design


Materials of Construction


• Elastomers available in Pure Gum Rubber, Neoprene, Hypalon®, Chlorobutyl, Buna-N, EPDM, and Viton®

We are pleased to announce the introduction of the revolutionary TF-1 Check Valve. It functions and operates under the same simple principle of operation as the original TF-2 Tideflex[®].

This design is ideal for existing manhole installations where the invert of the pipe is close to the floor of the vault. There are many check valves in interceptors, manholes, and vaults. These vaults are designed so that there would be a maximum gravity head; thus, the invert pipe is as close to the base as possible. The TF-1 allows installations in such applications.

The Tideflex[®] Technologies Series TF-1 Tideflex[®] Check Valve is designed for applications in manholes, where the bottom of the manhole is close to the invert of the pipe. The TF-1 configuration allows the valve to be properly installed without manhole modification, ensuring positive backflow prevention and a lifetime of maintenance-free performance.

Pipe O.D. (A)	Length (L)	Bill Height (H)	Cuff Length (C)
4	10	8	1 1/2
5 6	10	8	1 1/2
6	16	12	2
8	18	16	2
10	23	19	3
12	27	23	4
14	27	23	4
16	35	30	5
18	36	34	6
20 22	44 44	37	8
22	44 48	37 43	8 8
24	48	43	8
28	48	43	8
30	56	55	8 9
32	56	55	9
36	67	69	10
38	67	69	10
40	67	69	10
42	61	71	10
44	61	71	10
48	66	78	10
50	66	78	10
54	66	78	10
58	66	78	10
60	73	91	14
68	73	91	14
72	96	115	16

Numbers indicate maximum dimensions in inches.